10) Forces and motion

0.1) Force diagrams
0.2) Forces as vectors
0.3) Forces and acceleration
o.4) Motion in 2 dimensions
0.5) Connected particles
o.6) Pulleys

10.1) Force diagrams

Diagrams/Graphs used with permission from DrFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
A particle is acted on a by a set of forces. Given that the particle is at rest, find the values of p and q 2q N 40 N + 4q N (2p-1) N	A particle is acted on a by a set of forces. Given that the particle is at rest, find the values of p and q 3p N 8q N 48 N p = 16, q = 10

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

10.2) Forces as vectors

Worked example	Your turn
The forces $3i - 2j$, $-4i + j$, $-2i - 3j$ and $ai + bj$ act on an object which is in equilibrium. Find the values of a and b .	The forces $2\mathbf{i} + 3\mathbf{j}$, $4\mathbf{i} - \mathbf{j}$, $-3\mathbf{i} + 2\mathbf{j}$ and $a\mathbf{i} + b\mathbf{j}$ act on an object which is in equilibrium. Find the values of a and b .
	a = -3, b = -4

Worked example	Your turn
 The vector <i>i</i> is due east and <i>j</i> due north. A particle begins at rest at the origin. It is acted on by three forces (3<i>i</i> - <i>j</i>) N, (2<i>i</i> + 3<i>j</i>) N and (-4<i>i</i> + <i>j</i>) N. (a) Find the resultant force in the form <i>pi</i> + <i>qj</i>. (b) Work out the magnitude and bearing of the resultant force. 	 The vector <i>i</i> is due east and <i>j</i> due north. A particle begins at rest at the origin. It is acted on by three forces (2<i>i</i> + <i>j</i>) N, (3<i>i</i> - 2<i>j</i>) N and (-<i>i</i> + 4<i>j</i>) N. (a) Find the resultant force in the form <i>pi</i> + <i>qj</i>. (b) Work out the magnitude and bearing of the resultant force. a) 4<i>i</i> + 3<i>j</i> b) 053.1° (1 dp)

Worked example	Your turn
Worked exampleThree forces F_1, F_2 and F_3 acting on a particle P are: $F_1 = (9i - 7j) N$ $F_2 = (6i + 5j) N$ $F_2 = (6i + 5j) N$ $F_3 = (pi + qj) N$ where p and q are constants.Given that P is in equilibrium,a) Find the value of p and the value of q The force F_3 is now removed. The resultant of F_1 and F_2 is R . Find:b) The magnitude of R c) The angle, to the nearest degree, that the direction of R makes with j .	Your turnThree forces F_1, F_2 and F_3 acting on a particle P are: $F_1 = (7i - 9j) N$ $F_2 = (5i + 6j) N$ $F_2 = (5i + 6j) N$ $F_3 = (pi + qj) N$ where p and q are constants.Given that P is in equilibrium,a) Find the value of p and the value of q The force F_3 is now removed. The resultant of F_1 and F_2 is R . Find:b) The magnitude of R c) The angle, to the nearest degree, that the direction of R makes with j .
c) The angle, to the nearest degree, that the direction of <i>R</i> makes with <i>j</i> .	 c) The angle, to the nearest degree, that the direction of <i>R</i> makes with <i>j</i>. a) <i>p</i> = -12, <i>q</i> = 3 b) 12.4 <i>N</i> (3 sf) c) 104°

Worked example	Your turn
Two forces F_1 and F_2 acting on a particle P are: $F_1 = (3i - 2j) N$ $F_2 = (pi + 3pj) N$ where p is a positive constant. a) Find the angle between F_2 and i The resultant of F_1 and F_2 is R . b) Given that R is parallel to j , find the value of p	Two forces F_1 and F_2 acting on a particle P are: $F_1 = (i - 3j) N$ $F_2 = (pi + 2pj) N$ where p is a positive constant. a) Find the angle between F_2 and j The resultant of F_1 and F_2 is R . b) Given that R is parallel to i , find the value of p a) 26.6° b) $p = \frac{3}{2}$

Worked example	Your turn
Two forces F_1 and F_2 acting on a particle P are: $F_1 = (3i - 2j) N$ $F_2 = (pi + 3pj) N$ where p is a positive constant. The resultant of F_1 and F_2 is R . Given that R is parallel to $13i + 10j$, find the value of p	Two forces F_1 and F_2 acting on a particle P are: $F_1 = (2i - 3j) N$ $F_2 = (pi + 2pj) N$ where p is a positive constant. The resultant of F_1 and F_2 is R . Given that R is parallel to $12i + 11j$, find the value of p
	$p = \frac{58}{13}$

$$p = \frac{58}{13}$$

10.3) Forces and acceleration

Worked example	Your turn
A car of 1000kg has a driving force of 1600N and forces of 400N resisting its motion. Determine its acceleration.	A car of 2000kg has a driving force of 800N and forces of 200N resisting its motion. Determine its acceleration.
	$0.3 m s^{-2}$

Worked example	Your turn
An object of mass 140kg experiences air resistance of 600 N. Determine the object's acceleration as it falls towards the ground.	An object of mass 70kg experiences air resistance of 300 N. Determine the object's acceleration as it falls towards the ground.
	5.51 <i>ms</i> ⁻² (3 sf)

Worked example	Your turn
An adult has a mass of 100kg. What is the gravitational force (weight) acting on the adult?	A child has a mass of 50kg. What is the gravitational force (weight) acting on the child?
	490 <i>N</i>

Worked example	Your turn
 A body of mass 10kg is pulled along a rough horizontal table by a horizontal force of magnitude 40N against a constant friction force of magnitude 8N. Given that the body is initially at rest, find: (a) the acceleration of the body (b) the distance travelled by the body in the first 2 seconds (c) the magnitude of the normal reaction between the body and the table 	A body of mass 5kg is pulled along a rough horizontal table by a horizontal force of magnitude 20N against a constant friction force of magnitude 4N. Given that the body is initially at rest, find: (a) the acceleration of the body (b) the distance travelled by the body in the first 4 seconds (c) the magnitude of the normal reaction between the body and the table a) $3.2 m s^{-2}$ b) 25.6 m c) 49 N

Worked example	Your turn
An objects of mass 8 kg hits soft ground at a speed of 14 ms ⁻¹ and sinks vertically downwards before coming to rest. The ground is assumed to exert a constant resistive force of magnitude 5000 N. Find the vertical distance that the object sinks into the ground before coming to rest.	An objects of mass $4 kg$ hits soft ground at a speed of $28 ms^{-1}$ and sinks vertically downwards before coming to rest. The ground is assumed to exert a constant resistive force of magnitude 5000 N. Find the vertical distance that the object sinks into the ground before coming to rest. 0.32 m (2 sf)

Worked example	Your turn
 A lift of mass 500 kg is lowered or raised by a metal cable attached to its top. The lift contains passengers whose total mass is 100 kg. The lift starts from rest and accelerates at a constant rate, reaching a speed of 5 ms⁻¹ after moving a distance of 4 m. Find: a) The acceleration of the lift b) The tension in the cable if the lift is moving vertically downwards c) The tension in the cable if the lift is moving vertically upwards 	 A lift of mass 400 kg is lowered or raised by a metal cable attached to its top. The lift contains passengers whose total mass is 200 kg. The lift starts from rest and accelerates at a constant rate, reaching a speed of 4 ms⁻¹ after moving a distance of 5 m. Find: a) The acceleration of the lift b) The tension in the cable if the lift is moving vertically downwards c) The tension in the cable if the lift is moving vertically upwards a) 1.6 ms⁻² b) 4920 N c) 6840 N

10.4) Motion in 2 dimensions

Worked example	Your turn
 Let <i>i</i> represent East and <i>j</i> North. A resultant force of (2<i>i</i> + 7<i>j</i>) <i>N</i> acts upon a particle of mass 0.25 kg. (a) Find the acceleration of the particle in the form (<i>pi</i> + <i>qj</i>) ms⁻². (b) Find the magnitude and bearing of the acceleration of the particle. 	 Let <i>i</i> represent East and <i>j</i> North. A resultant force of (3<i>i</i> + 8<i>j</i>) <i>N</i> acts upon a particle of mass 0.5 kg. (a) Find the acceleration of the particle in the form (<i>pi</i> + <i>qj</i>) <i>ms</i>⁻². (b) Find the magnitude and bearing of the acceleration of the particle. a) (6<i>i</i> + 16<i>j</i>) <i>ms</i>⁻² b) Magnitude = 17.1 <i>ms</i>⁻² (3 sf) Bearing = 020.6° (1 dp)

Worked example	Your turn
A boat is modelled as a particle of mass 30 kg being acted on by three forces. $F_1 = \binom{25}{40}N,$ $F_2 = \binom{5q}{10q}N,$ $F_3 = \binom{50}{-37.5}N$ Given that the boat is accelerating at a rate of $\binom{-0.75}{0.4}$ ms ⁻² , find the values of p and q .	A boat is modelled as a particle of mass 60 kg being acted on by three forces. $F_1 = \begin{pmatrix} 80 \\ 50 \end{pmatrix} N,$ $F_2 = \begin{pmatrix} 10q \\ 20q \end{pmatrix} N,$ $F_3 = \begin{pmatrix} -75 \\ 100 \end{pmatrix} N$ Given that the boat is accelerating at a rate of $\begin{pmatrix} 0.8 \\ -1.5 \end{pmatrix}$ ms ⁻² , find the values of p and q . p = 4.3, q = -12

Worked example	Your turn
A particle of mass 5 kg start from rest and is acted upon by a force R of $(4\mathbf{i} + k\mathbf{j}) N$. R acts on a bearing of 45°. Find the value of k	A particle of mass $4 kg$ start from rest and is acted upon by a force R of $(5i + kj) N$. R acts on a bearing of 135°. Find the value of k
	k = -5

Worked example	Your turn
Two forces, $\binom{5}{2}$ N and $\binom{p}{q}$ N act on a particle of mass m kg. The resultant of the two forces is R .	Two forces, $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ N and $\begin{pmatrix} p \\ q \end{pmatrix}$ N act on a particle of mass m kg. The resultant of the two forces is R .
to the vector $\binom{-1}{2}$, show that $2p + q + 12 = 0$	to the vector $\binom{-2}{1}$, show that $2q + p + 11 = 0$
b) Given also that $p = 1$ and that P moves with an acceleration of magnitude $10\sqrt{5} m s^{-2}$, find the value of m	 b) Given also that p = 5 and that P moves with an acceleration of magnitude 40√5 ms⁻², find the value of m a) Shown b) m = 0.1 kg

10.5) Connected particles

Worked example	Your turn
 Two particles, P and Q, of masses 6kg and 4kg respectively, are connected by a light inextensible string. Particle Q is pulled by a horizontal force of magnitude 20N along a rough horizontal plane. Particle Q experiences a frictional force of 5N and particle P experiences a frictional force of 3N. (a) Find the acceleration of the particles. (b) Find the tension in the string. (c) Explain how the modelling assumptions that the string is light and inextensible have been used. 	Two particles, <i>P</i> and <i>Q</i> , of masses 5kg and 3kg respectively, are connected by a light inextensible string. Particle <i>P</i> is pulled by a horizontal force of magnitude 40N along a rough horizontal plane. Particle <i>P</i> experiences a frictional force of 10N and particle <i>Q</i> experiences a frictional force of 6N. (a) Find the acceleration of the particles. (b) Find the tension in the string. a) $a = 3 m s^{-2}$ b) $T = 15 N$

Worked example	Your turn
 A light scale-pan is attached to a vertical light inextensible string. The scale-pan carries two masses A and B. The mass of A is 300g and the mass of B is 200g. A rests on top of B. The scale-pan is raised vertically, using the string, with acceleration 0.25 ms⁻². (a) Find the tension in the string. (b) Find the force exerted on mass B by mass A. (c) Find the force exerted on mass B by the scale-pan. 	 A light scale-pan is attached to a vertical light inextensible string. The scale-pan carries two masses A and B. The mass of A is 400g and the mass of B is 600g. A rests on top of B. The scale-pan is raised vertically, using the string, with acceleration 0.5 ms⁻². (a) Find the tension in the string. (b) Find the force exerted on mass B by mass A. (c) Find the force exerted on mass B by the scale-pan. a) 10 N (2 sf) b) 4.1 N (2 sf) c) 10 N (2 sf)

Worked example	Your turn
 A person travels in a lift. The mass of the person is 40 kg and the mass of the lift is 860 kg. The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration 4 ms⁻². By modelling the cable as being light and inextensible, find: a) The tension in the cable b) The magnitude of the force exerted on the woman by the floor of the lift 	 A person travels in a lift. The mass of the person is 50 kg and the mass of the lift is 950 kg. The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration 2 ms⁻². By modelling the cable as being light and inextensible, find: a) The tension in the cable b) The magnitude of the force exerted on the woman by the floor of the lift
	a) 7800 <i>N</i> b) 390 <i>N</i>

Worked example	Your turn
A car of mass 1200 kg pulls a trailer of mass 400 kg along a straight horizontal road using a light tow-bar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 400 N and 200 N respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 2000 N. a) Find the acceleration of the car and trailer b) Find the magnitude of the tension in the tow-bar The engine cuts out, reducing the force produced by the engine to zero and the brakes are applied. The brakes produce a force on the car of magnitude F Newtons and the car and trailer decelerate. Given that the resistances to motion are unchanged, and the magnitude of the thrust in the towbar is 300 N, find the value of F	A car of mass 600 kg pulls a trailer of mass 200 kg along a straight horizontal road using a light tow-bar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 300 N and 100 N respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 1600 N. a) Find the acceleration of the car and trailer b) Find the magnitude of the tension in the tow-bar The engine cuts out, reducing the force produced by the engine to zero and the brakes are applied. The brakes produce a force on the car of magnitude F Newtons and the car and trailer decelerate. Given that the resistances to motion are unchanged, and the magnitude of the thrust in the towbar is 200 N, find the value of F a) $a = 1.5 ms^{-2}$ b) 400 N c) 800 N

10.6) Pulleys

Worked example	Your turn
 Particles P and Q, of masses 5m and 4m, are attached to the ends of a light inextensible string. The string passes over a small smooth fixed pulley and the masses hang with the string taut. The system is released from rest. (a) Write down an equation of motion for P and for Q. (b) Find the acceleration of each mass. (c) Find the tension in the string. (d) Find the force exerted on the pulley by the string. (e) Find the distance moved by P in the first 2 s, assuming that Q does not reach the pulley. 	Particles <i>P</i> and <i>Q</i> , of masses 2 <i>m</i> and 3 <i>m</i> , are attached to the ends of a light inextensible string. The string passes over a small smooth fixed pulley and the masses hang with the string taut. The system is released from rest. (a) Write down an equation of motion for <i>P</i> and for <i>Q</i> . (b) Find the acceleration of each mass. (c) Find the tension in the string. (d) Find the force exerted on the pulley by the string. (e) Find the distance moved by <i>Q</i> in the first 4 s, assuming that <i>P</i> does not reach the pulley. a) For <i>P</i> , <i>R</i> (↑): <i>T</i> - 2 <i>mg</i> = 2 <i>ma</i> For <i>Q</i> , <i>R</i> (↓): 3 <i>mg</i> - <i>T</i> = 3 <i>ma</i> b) $a = \frac{1}{5}g = 2.0 ms^{-2}$ (2 sf) c) $T = \frac{12}{5}mg N$ d) $\frac{24}{5}mg N$ e) 15.7 <i>m</i> (3 sf)

Worked example	Your turn
 Two particles A and B of masses 0.8kg and 1.6kg respectively are connected by a light inextensible string. Particle A lies on a rough horizontal table 9m from a small smooth pulley which is fixed at the edge of the table. The string passes over the pulley and B hangs freely, with the string taut, 1m above horizontal ground. A frictional force of magnitude 0.16g opposes the motion of particle A. The system is released from rest. Find: (a) The acceleration of the system (b) The time taken for B to reach the ground (c) The total distance travelled by A before it first comes to rest. 	Two particles <i>A</i> and <i>B</i> of masses 0.4kg and 0.8kg respectively are connected by a light inextensible string. Particle <i>A</i> lies on a rough horizontal table 4.5m from a small smooth pulley which is fixed at the edge of the table. The string passes over the pulley and <i>B</i> hangs freely, with the string taut, 0.5m above horizontal ground. A frictional force of magnitude 0.08g opposes the motion of particle <i>A</i> . The system is released from rest. Find: (a) The acceleration of the system (b) The time taken for <i>B</i> to reach the ground (c) The total distance travelled by <i>A</i> before it first comes to rest. a) $0.6g = 5.9 ms^{-2}$ (2 sf) b) $0.41 s$ (2 sf) c) $2.0 m$ (2 sf)

Worked example	Your turn
Two particles A and B have masses $10m$ and km respectively, where $k < 10$. The particles are connected by a light inextensible string which passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string vertical and with A and B at the same height above a horizontal plane. The system is released from rest.	Two particles A and B have masses $5m$ and km respectively, where $k < 5$. The particles are connected by a light inextensible string which passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string vertical and with A and B at the same height above a horizontal plane. The system is released from rest.
After release, A descends with acceleration $\frac{1}{2}g$.	After release, A descends with acceleration $\frac{1}{4}g$.
After descending for 2.4 s, the particle <i>A</i> reaches the plane. It is immediately brought to rest by the impact with the plane. The initial distance between <i>B</i> and the pulley is such that, in the subsequent motion, <i>B</i> does not reach the pulley. Find the greatest height reached by <i>B</i> above the plane.	After descending for 1.2 s, the particle <i>A</i> reaches the plane. It is immediately brought to rest by the impact with the plane. The initial distance between <i>B</i> and the pulley is such that, in the subsequent motion, <i>B</i> does not reach the pulley. Find the greatest height reached by <i>B</i> above the plane. 4.0 <i>m</i>