1) Momentum and impulse

1.1) Momentum in one direction
1.2) Conservation of momentum
1.3) Momentum as a vector
1.1) Momentum in one direction

Worked example
Momentum = Mass x Velocity

Mass	Velocity	Momentum
6 kg	$5 \mathrm{~m} / \mathrm{s}$	
	$13 \mathrm{~ms}^{-1}$	$65 \mathrm{kgms}^{-1}$
523 kg		0 Ns
3 kg	$4 \mathrm{i}+7 \mathrm{j} \mathrm{ms}^{-1}$	

Your turn

Momentum = Mass x Velocity

Mass	Velocity	Momentum
523 kg	$0 \mathrm{~ms}^{-1}$	0 Ns
0.2 kg	$7 \mathrm{i}+7 \mathrm{j} \mathrm{ms}^{-1}$	$1.4 \mathrm{i}+1.4 \mathrm{jgms}^{-1}$
0.002 tonnes	$3 \mathrm{i}+9 \mathrm{j} \mathrm{ms}^{-1}$	$6 \mathrm{i}+18 \mathrm{j} \mathrm{Ns}$
600 g	$36 \mathrm{~km} / \mathrm{h}$	6 Ns

Your turn

Calculate the impulse exerted on the object:

- A force of 30 N exerted on an object for 0.5 seconds

Calculate the impulse exerted on the object:

- A rocket of mass 100 kg travelling at $2000 \mathrm{~ms}^{-1}$ hits the ground and stops.

200000 Ns

- A ball of mass 3 kg was travelling at $10 \mathrm{~ms}^{-1}$, is hit and returns in the opposite direction at a speed of $6 \mathrm{~ms}^{-1}$

48 Ns

- The momentum before impact is $6 \mathbf{i}-5 \mathbf{j} \mathrm{Ns}$ and the momentum after impact is $-10 \mathbf{i}+5 \mathbf{j}$ Ns

$$
-16 \boldsymbol{i}+10 \boldsymbol{j} N s
$$

A ball of mass 0.4 kg hits a vertical wall at right angles with a speed of $7 \mathrm{~ms}^{-1}$. The ball rebounds with speed $5 \mathrm{~ms}^{-1}$. Find the magnitude of the impulse exerted on the wall by the ball.

A ball of mass 0.2 kg hits a vertical wall at right angles with a speed of $3.5 \mathrm{~ms}^{-1}$. The ball rebounds with speed $2.5 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted on the wall by the ball.
1.2 Ns

Your turn

Two particles A and B, of mass 0.6 kg and m kg respectively, are moving in opposite directions along the same straight horizontal line so that the particles collide directly. Immediately before the collision, the speeds of A and B are $4 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
In the collision the direction of motion of each particle is reversed and, immediately after the collision, the speed of each particle is $2 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted by B on A in the collision.

Two particles A and B, of mass 0.3 kg and m kg respectively, are moving in opposite directions along the same straight horizontal line so that the particles collide directly. Immediately before the collision, the speeds of A and B are $8 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.
In the collision the direction of motion of each particle is reversed and, immediately after the collision, the speed of each particle is $2 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted by B on A in the collision.

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Your turn

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Your turn

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Worked example

Your turn

A particle P of mass 4 kg is moving with speed $6 \mathrm{~ms}^{-1}$ on a smooth horizontal plane. Particle Q of mass 6 kg is at rest on the plane. Particle P collides with particle Q and after the collision Q moves with speed $\frac{14}{3} m s^{-1}$. Find:
a) The speed and direction of motion of P after the collision
b) The magnitude of the impulse received by P in the collision

A particle P of mass 2 kg is moving with speed $3 \mathrm{~ms}^{-1}$ on a smooth horizontal plane.
Particle Q of mass 3 kg is at rest on the plane.
Particle P collides with particle Q and after the collision Q moves with speed $\frac{7}{3} m s^{-1}$. Find:
a) The speed and direction of motion of P after the collision
b) The magnitude of the impulse received by P in the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed.
b) 7 Ns

Worked example

Your turn

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface.
The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
After the collision the direction of motion of A is reversed and its speed is $2 \mathrm{~ms}^{-1}$. Find:
a) The speed and direction of B after the collision
b) The magnitude of the impulse given by A to B in the collision

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface.
The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
After the collision the direction of motion of A is reversed and its speed is $2 \mathrm{~ms}^{-1}$. Find:
a) The speed and direction of B after the collision
b) The magnitude of the impulse given by A to B in the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed.
b) 10 Ns

Worked example

Your turn

Two particles P and Q , of masses 8 kg and 4 kg respectively, are connected by a light inextensible string.
The particles are at rest on a smooth horizontal plane with the string slack. Particle P is projected directly away from Q with speed $2 \mathrm{~ms}^{-1}$.
a) Find the common speed of the particles after the string goes taut.
b) Find the magnitude of the impulse transmitted through the string when it goes taught.

Two particles P and Q , of masses 8 kg and 2 kg respectively, are connected by a light inextensible string.
The particles are at rest on a smooth horizontal plane with the string slack. Particle P is projected directly away from Q with speed $4 m s^{-1}$.
a) Find the common speed of the particles after the string goes taut.
b) Find the magnitude of the impulse transmitted through the string when it goes taught.
a) $3.2 \mathrm{~ms}^{-1}$
b) 6.4 Ns

Your turn

Two particles A and B of masses 4 kg and 2 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide.
Before the collision the speeds of A and B are $6 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.
Given that the magnitude of the impulse due to the collision is 14 Ns , find:
a) The velocity of A after the collision
b) The velocity of B after the collision

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
Given that the magnitude of the impulse due to the collision is 7 Ns , find:
a) The velocity of A after the collision
b) The velocity of B after the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed
b) $0.25 \mathrm{~ms}^{-1}$; direction of motion is unchanged.

Your turn

A truck P of mass $4 M$ is moving with speed U on smooth straight horizontal rails. It collides directly with another truck Q of mass $6 M$ which is moving with speed $2 U$ in the opposite direction on the same rails. The trucks join so that immediately after the collision they move together. By modelling the trucks as particles, find:
a) The speed of the trucks immediately after the collision
b) The magnitude of the impulse exerted on P by Q in the collision

A truck P of mass $2 M$ is moving with speed U on smooth straight horizontal rails. It collides directly with another truck Q of mass $3 M$ which is moving with speed $4 U$ in the opposite direction on the same rails. The trucks join so that immediately after the collision they move together. By modelling the trucks as particles, find:
a) The speed of the trucks immediately after the collision
b) The magnitude of the impulse exerted on P by Q in the collision
a) $2 U$
b) 6 MU

Your turn

A particle of mass 0.4 kg is moving with velocity $(5 \mathbf{i}-10 \mathbf{j}) \mathrm{ms}^{-1}$ when it receives an impulse $(2 \mathbf{i}-3 \mathbf{i}) \mathrm{Ns}$. Find the new velocity of the particle.

A particle of mass 0.2 kg is moving with velocity $(10 \mathbf{i}-5 \mathbf{j}) \mathrm{ms}^{-1}$ when it receives an impulse $(3 \mathbf{i}-2 \mathbf{j}) \mathrm{Ns}$. Find the new velocity of the particle.

$$
(25 \boldsymbol{i}-15 \boldsymbol{j}) m s^{-1}
$$

Your turn

An ice hockey puck of mass 0.34 kg receives an impulse Q Ns .
Immediately before the impulse the velocity of the puck is $(5 \mathbf{i}+10 \mathbf{j}) m s^{-1}$ and immediately afterwards its velocity is $(7 \mathbf{i}-15 \mathbf{j}) m s^{-1}$. Find the magnitude of \mathbf{Q} and the angle between \mathbf{Q} and \mathbf{i}.

An ice hockey puck of mass 0.17 kg receives an impulse \mathbf{Q} Ns .
Immediately before the impulse the velocity of the puck is $(10 \mathbf{i}+5 \mathbf{j}) \mathrm{ms}^{-1}$ and immediately afterwards its velocity is $(15 \mathbf{i}-7 \mathbf{j}) \mathrm{ms}^{-1}$. Find the magnitude of \mathbf{Q} and the angle between \mathbf{Q} and \mathbf{i}.
$|\boldsymbol{Q}|=2.21$
Angle between \boldsymbol{Q} and $\boldsymbol{i}=67.4^{\circ}(1 \mathrm{dp})$

A squash ball of mass 0.05 kg is moving with velocity $(44 \boldsymbol{i}+74 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it hits a wall. It rebounds with velocity $(20 \boldsymbol{i}-22 \boldsymbol{j}) m s^{-1}$. Find the impulse exerted by the wall on the squash ball.

A squash ball of mass 0.025 kg is moving with velocity $(22 \boldsymbol{i}+37 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it hits a wall.
It rebounds with velocity $(10 \boldsymbol{i}-11 \boldsymbol{j}) m s^{-1}$. Find the impulse exerted by the wall on the squash ball.

$$
(-0.3 \boldsymbol{i}-1.2 \boldsymbol{j}) N S
$$

Your turn

A particle of mass 0.3 kg is moving with velocity $(10 \boldsymbol{i}-20 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it collides with a particle of mass 0.5 kg moving with velocity $(8 \boldsymbol{i}-16 \boldsymbol{j}) \mathrm{ms}^{-1}$.
The two particles coalesce and move as one particle of mass 0.8 kg .
Find the velocity of the combined particle.

A particle of mass 0.15 kg is moving with velocity $(20 \boldsymbol{i}-10 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it collides with a particle of mass 0.25 kg moving with velocity $(16 \boldsymbol{i}-8 \boldsymbol{j}) \mathrm{ms}^{-1}$.
The two particles coalesce and move as one particle of mass 0.4 kg .
Find the velocity of the combined particle.

$$
(17.5 \boldsymbol{i}-8.75 \boldsymbol{j}) m s^{-1}
$$

