# Core Pure 2

# Polar Coordinates

| 7<br>Polar<br>coordinates | 7.1 | Understand and use<br>polar coordinates<br>and be able to<br>convert between<br>polar and Cartesian<br>coordinates. |                                                                                                                                                                                                                                      |
|---------------------------|-----|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 7.2 | Sketch curves with $r$ given as a function of $\theta$ , including use of trigonometric functions.                  | The sketching of curves such as<br>$r = p \sec (\alpha - \theta), r = a,$<br>$r = 2a \cos\theta, r = k\theta, r = a(1 \pm \cos\theta),$<br>$r = a(3 + 2 \cos\theta), r = a \cos 2\theta$ and<br>$r^2 = a^2 \cos 2\theta$ may be set. |
|                           | 7.3 | Find the area<br>enclosed by a polar<br>curve.                                                                      | Use of the formula $\frac{1}{2}\int_{\alpha}^{\beta}r^{2}d\theta$ for area.<br>The ability to find tangents parallel to, or at right angles to, the initial line is expected.                                                        |

Polar coordinates describe the location of a point in a 2D plane using the distance from the origin and anti-clockwise angle from the positive x-axis.

#### Recap: Converting to/ from polar coordinates

If:  $x = r \cos \theta$   $y = r \sin \theta$ 

Then: 
$$r^2 = x^2 + y^2$$

And:  $\theta = \tan^{-1}\left(\frac{y}{x}\right)$  (adjusted depending on quadrant)

| Cartesian | Polar                           |
|-----------|---------------------------------|
| (0,2)     |                                 |
|           | (3,π)                           |
| (1,1)     |                                 |
| (-5,12)   |                                 |
|           | $\left(6,-\frac{\pi}{6}\right)$ |

### <u>The Polar Equation of a Curve: $r = f(\theta)$ </u>

We can express equations of curves in polar form. Sometimes we can convert the polar form to cartesian form but often equations are simpler when left in polar form.

Find a cartesian equation for the following curves:

1. 
$$r = 5$$
 2.  $r = 2 + \cos 2\theta$ 

3. 
$$r^2 = \sin 2\theta$$

## Converting to Polar Form:

Converting to polar is easier, but the harder part is often finding how to simplify the expression. Know your double angle formulae!

Find polar equations for the following:

1. 
$$y^2 = 4x$$

2. 
$$x^2 - y^2 = 5$$

3. 
$$y\sqrt{3} = x + 4$$

Test your understanding

Find the polar equation of a circle whose centre has polar coordinate (2, 0) with radius 2.

Ex 5A pg 104

## **Sketching Curves of Polar Equations**

How would you sketch each of the following? (Listed on specification)

1. r = a

2.  $\theta = \alpha$ 

3.  $r = a\theta$ 

Summary





## **Sketching Using a Table of Values**

## Use the table to sketch the graph of $r = a(1 + \cos \theta)$

| θ | 0 | $\frac{\pi}{2}$ | π | $\frac{3\pi}{2}$ | 2π |
|---|---|-----------------|---|------------------|----|
| r |   |                 |   |                  |    |

(NB: Negative values of r are discounted in Edexcel CP2)

Examples:

1.  $r = \sin 3\theta$ 

2.  $r^2 = a^2 \cos 2\theta$ 

Investigate these:

 $1.r = 2sin\theta \qquad 4.r = 3cos4\theta$ 

 $2.r = 2\cos\theta \qquad \qquad 5.r = 4\sin\theta$ 

 $3.r = 3sin4\theta \qquad \qquad 6.r = 4cos\theta$ 

| Observations: |
|---------------|
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |

### Egg or Dimple? $r = a(p + q \cos \theta)$

Polar graphs of the form  $r = \pm p \pm q \cos \theta$  or  $r = \pm p \pm q \sin \theta$  with p,q > 0 are known as limaçons.

The ratio  $\frac{p}{q}$  tells us about the general shape of the limaçon.

For CP2 we are required to sketch limaçons of the  $r = a(p + q \cos \theta)$  and  $r = a(1 \pm \cos \theta)$ . Since we require r > 0 we need only situations where  $p \ge q$ .

<u>Case 1: p = q</u>

<u>Case 2: p > 2q</u>

<u>Case 3: q

<u>Case 4: (not required but interesting!) p < q</u>

## Examples:

1. Sketch  $r = a(5 + 2\cos\theta)$ 

2. Sketch  $r = a(3 + 2\cos\theta)$ 

- 3. (a) Show on an Argand diagram the locus of points given by the values of z satisfying |z 3 4i| = 5
  - (b) Show that this locus of points can be represented by the polar curve

 $r = 6\cos\theta + 8\sin\theta$ 

Ex 5B pg 108/ 109

#### Summary so far:





#### Areas enclosed by polar curves

The area of a sector bounded by a polar curve and the half lines  $\theta = \alpha$  and  $\theta = \beta$  (when  $\theta$  is given in radians) is given by:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

When finding the area of a sector we almost always need to integrate trig functions, in particular using the double angle formulae.

Reminder:

$$\cos 2\theta = 2\cos^2 \theta - 1 \qquad \qquad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$
$$\cos 2\theta = 1 - 2\sin^2 \theta \qquad \qquad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$$

Example:

1. Find the area enclosed by the cardioid with equation  $r = a(1 + \cos \theta)$ 

2. Find the area of one loop of the polar rose  $r = a \sin 4\theta$ 

## Test Your Understanding

Fig. 1 shows a sketch of the curve with polar equation  $r = a + 3\cos\theta$   $a > 0.0 \le \theta < 2\pi$ 

The area enclosed by the curve is  $\frac{107}{2}\pi$ .

Find the value of a.

(8 marks)



#### **Intersecting Areas**

When polar curves intersect we have to consider which curve we're finding the area under for each value of  $\theta$ .

Example

- (a) On the same diagram sketch the curves with equations  $r=2+\cos\theta$  and  $r=5\cos\theta$
- (b) Find the polar coordinates of the points of intersection of these two curves.
- (c) Find the exact value of the area of the finite region bound between the two curves.

#### Test your understanding

Figure 1 shows the curves given by the polar equations

$$r = 2$$
,  $0 \le \theta < \frac{\pi}{2}r = 1.5 + \sin 3\theta$   $0 \le \theta \le \frac{\pi}{2}$ 

- (a) Find the coordinates of the points where the curves intersect. (3)
- (b) The region S for which r > 2 and  $r < 1.5 + \sin 3\theta$  is shown. Find, by integration, area of S giving your answer in the form  $a\pi + b\sqrt{3}$  where a and b are simplified fractions. (7)



#### **Tangents and Normals**

Remember how you found the gradient given equations in parametric form.

$$x = \cos t, \quad y = \sin t$$
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\cos t}{-\sin t} = -\cot t$$

In the same way for polar coordinates:

$$x = r \cos \theta \qquad y = r \sin \theta$$
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)}$$

We can find the gradient at any point by differentiating parametrically.

- If  $\frac{dy}{d\theta} = 0$  the tangent is parallel to the initial line
- If  $\frac{dx}{d\theta} = 0$  the tangent is perpendicular to the initial line.



Eaxmple

Find the coordinates of the points on  $r = a(1 + \cos \theta)$  where the tangents are parallel to the initial line  $\theta = 0$ .

## Test Your Understanding

The curve C has polar equation

$$r = 1 + 2\cos\theta, \quad 0 \le \theta \le \frac{\pi}{2}$$

At the point P on C, the tangent to C is parallel to the initial line.

Given that O is the pole, find the exact length of the line OP.

Example

Find the equations and the points of contact of the tangents to the curve

$$r = a \sin 2\theta, \ 0 \le \theta \le \frac{\pi}{2}$$

that are (a) parallel to the initial line and (b) perpendicular to the initial line.

# Proof of dimple vs egg

Prove that for  $r = p + q \cos \theta$  we have a 'dimple' if p < 2q.



Ex 5D pg 115