Core Pure 2

Volumes of Revolution

Chapter Overview

1: Revolving around the x-axis.
2: Revolving around the y-axis.
3: Volumes of revolution with parametric curves.

4: Modelling

5	5.1	Derive formulae for and calculate volumes of revolution.	Both $\pi \int y^{2} \mathrm{~d} x$ and $\pi \int x^{2}$ dy are
required. Students should be able to find a			
volume of revolution given either Cartesian			
equations or parametric equations.			

This chapter involves volumes of revolution but with trickier integration than in CP1.

Revolving around the x-axis

Recap: When revolving around the x-axis, $V=\pi \int_{b}^{a} y^{2} d x$

Example
The region R is bounded by the curve with equation $y=\sin 2 x$, the x-axis and $x=\frac{\pi}{2}$. Find the volume of the solid formed when region R is rotated through 2π radians about the x axis.

Figure 3 shows a sketch of part of the curve with equation $y=1-2 \cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.
(a) Find, in terms of π, the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.
(b) Find, by integration, the exact value of the volume of the solid generated.

Revolving around the y-axis

Recap: When revolving around the y-axis, $V=\pi \int_{b}^{a} x^{2} d y$
i.e. we are just swapping the roles of \boldsymbol{x} and \boldsymbol{y}.

Example
The diagram shows the curve with equation $y=4 \ln x-1$. The finite region R, shown in the diagram, is bounded by the curve, the x-axis, the y-axis and the line $y=4$. Region R is rotated by 2π radians about the y-axis. Use integration to show that the exact value of the volume of the solid generated is $2 \pi \sqrt{e}\left(e^{2}-1\right)$.

Volumes of revolution for parametric curves

We have seen in Pure Year 2 that parametric equations are where, instead of some single equation relating x and y, we have an equation for each of x and y in terms of some parameter, e.g. t. As t varies, this generates different points (x, y).
To integrate parametrically, the trick was to replace $d x$ with $\frac{d x}{d t} d t$
$V=\pi \int_{x=b}^{x=a} y^{2} d x$

Note that as we're integrating with respect to t now, we need to find the equivalent limits for t. We can do the same for revolving around the y-axis: just replace $d y$ with $\frac{d y}{d t}$ and change the limits.

Example

The curve C has parametric equations $x=t(1+t), y=\frac{1}{1+t^{\prime}}, t \geq 0$.
The region R is bounded by C, the x-axis and the lines $x=0$ and $y=0$. Find the exact volume of the solid formed when R is rotated 2π radians about the x-axis.

Test Your Understanding

Edexcel C4(Old) June 2011 Q7
The finite shaded region S shown in Figure 3 is bounded by the curve C, the line $x=\sqrt{3}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.
(c) Find the volume of the solid of revolution, giving your answer in the form $p \pi \sqrt{3}+q \pi^{2}$, where p and q are constants.

Figure 3 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=\sin \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

Modelling with Volumes of Revolution

Example

The diagram shows a model of a goldfish bowl. The cross-section of the model is described by the curve with parametric equations
$x=2 \sin t, y=2 \cos t+2, \frac{\pi}{6} \leq t \leq \frac{11 \pi}{6}$, where the units of x and y are in cm . The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution.
(a) Find the volume of water required to fill the model to a height of 3 cm .

The real goldfish bowl has a maximum diameter of 48 cm .
(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.

