Core Pure 2

Volumes of Revolution

Chapter Overview

- 1: Revolving around the *x*-axis.
- 2: Revolving around the *y*-axis.
- 3: Volumes of revolution with parametric curves.
- 4: Modelling

5 Further calculus	5.1	Derive formulae for and calculate volumes of	Both $\pi \int y^2 dx$ and $\pi \int x^2 dy$ are
		revolution.	required. Students should be able to find a volume of revolution given either Cartesian equations or parametric equations.

This chapter involves volumes of revolution but with trickier integration than in CP1.

Revolving around the x-axis

Recap: When revolving around the *x*-axis, $V = \pi \int_{b}^{a} y^{2} dx$

Example

The region *R* is bounded by the curve with equation $y = \sin 2x$, the *x*-axis and $x = \frac{\pi}{2}$. Find the volume of the solid formed when region *R* is rotated through 2π radians about the *x*-axis.

Edexcel C4(Old) Jan 2013 Q6

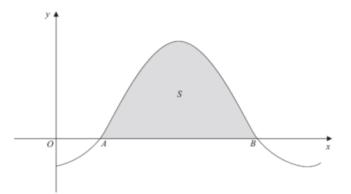


Figure 3 shows a sketch of part of the curve with equation $y = 1 - 2 \cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.

(a) Find, in terms of π , the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.

(b) Find, by integration, the exact value of the volume of the solid generated. (6)

Ex4A p. 78-80

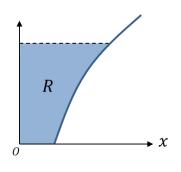
Revolving around the y-axis

Recap: When revolving around the *y*-axis, $V = \pi \int_{b}^{a} x^{2} dy$

i.e. we are just **swapping the roles of** *x* **and** *y*.

Example

The diagram shows the curve with equation $y = 4 \ln x - 1$. The finite region R, shown in the diagram, is bounded by the curve, the x-axis, the y-axis and the line y = 4. Region R is rotated by 2π radians about the y-axis. Use integration to show that the exact value of the volume of the solid generated is $2\pi\sqrt{e}(e^2 - 1)$.



Ex4B p. 81-83

Volumes of revolution for parametric curves

We have seen in Pure Year 2 that parametric equations are where, instead of some single equation relating x and y, we have an equation for each of x and y in terms of some parameter, e.g. t. As t varies, this generates different points (x, y).

To integrate parametrically, the trick was to replace dx with $\frac{dx}{dt} dt$

$$V = \pi \int_{x=b}^{x=a} y^2 \, dx$$

Note that as we're integrating with respect to t now, we need to find the equivalent limits for t. We can do the same for revolving around the y-axis: just replace dy with $\frac{dy}{dt}$ and change the limits.

<u>Example</u>

The curve C has parametric equations x = t(1 + t), $y = \frac{1}{1+t}$, $t \ge 0$.

The region R is bounded by C, the x-axis and the lines x = 0 and y = 0. Find the exact volume of the solid formed when R is rotated 2π radians about the x-axis.

Test Your Understanding

Edexcel C4(Old) June 2011 Q7

The finite shaded region S shown in Figure 3 is bounded by the curve C, the line $x = \sqrt{3}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Find the volume of the solid of revolution, giving your answer in the form $p\pi\sqrt{3} + q\pi^2$, where p and q are constants.

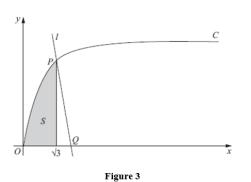


Figure 3 shows part of the curve C with parametric equations

 $x = \tan \theta, \qquad y = \sin \theta, \qquad 0 \le \theta < \frac{\pi}{2}.$

(7)

Modelling with Volumes of Revolution

Example

The diagram shows a model of a goldfish bowl. The cross-section of the model is described by the curve with parametric equations

 $x = 2 \sin t$, $y = 2 \cos t + 2$, $\frac{\pi}{6} \le t \le \frac{11\pi}{6}$, where the units of x and y are in cm. The goldfish bowl is formed by rotating this curve about the y-axis to form a solid of revolution.

(a) Find the volume of water required to fill the model to a height of 3cm.

The real goldfish bowl has a maximum diameter of 48cm.

(b) Find the volume of water required to fill the real goldfish bowl to the corresponding height.

