Chapter 1

Complex Numbers

Chapter Overview
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4

. Exponential form of a complex number
. Multiplying and dividing complex numbers
De Moivre’s Theorem

. De Moivre’s for Trigonometric Identities

a) Expressing cosné / sinnf in terms of powers of cos 8
b) Finding expressions for sin™ 6 and cos™ 6

. Roots

. Sums of series



2

Complex
numbers

continued

2.8 Understand de i , 1
L, To include using the results, z+ — = 2 cos @
Moivre's theorem -
and use it to find 1 o )
multiple angle and z— — = 21sin fto find cos p6. sin ¢b
formulae and sums - .
of series and tan 7@ in terms of powers of siné. cosd
' and tané and powers of sin &, cos @ and tan &
in terms of multiple angles.
For sums of series, students should be able
to show that, for example,
2 1 . T 3
l+z+z°+...+z" =1+icot| —
2n
where - — c05{£]+i5i11{£] and n is a
n n
positive integer.
2.9 Know and use the Students should be familiar with
definition )
6 — ~m C : .
e’ =cos A+isin 4 cos 6 = ~(e¥+e®) and
and the form 2
- =pelf 1 _
sin @ = — (e — %)
21
2.10 | Find the n distinct
nth roots of re'? for
r#0 and know that
they form the
vertices of a regular
n-gon in the Argand
diagram.
2.11 | Use complex roots

of unity to solve

geometric problems.




Recap: Mod/ arg form

Z=Xx+1y Ve )
Iy
r=|z| = 9
A > Re[z]
0 = arg(z) =
X =
y =
z=x+1iy =

x+ iy r 6 Mod-arg form

1+
—V3 +i



Exponential Form

We’ve seen the Cartesian form a complex number z = x + yi and the modulus-argument
form z = r(cos 8 + i sin 8). But wait, there’s a third form!

In the later chapter on Taylor expansions, you’ll see that you that you can write functions as
an infinitely long polynomial:

- 2 x4 X6

cosx =1 —E +Z —a +
_ B x3 x®

sinx =X el +§ — e

x% x® x* x> x°

X — - —_ —_ J— —_—
er= Ittt atetat

It looks like the cos x and sin x somehow add to give e*. The one problem is that the signs
don’t quite match up.



Exponential form  z = re'?

x+iy Mod-arg form Exp Form
-1
2 — 31
\/E(cosln—o + isin%)
3mi
z=+2e %
23mi
zZ=2e 5

Example

Use e!® = cos @ + i sin @ to show that cos 6 = %(eie +e79)

Example 1
Prove that 1 —¢" cos@ = —ie" sin @ .

Ex lapg5




Multiplying and Dividing Complex Numbers

Examples

5m . . bm T . . T
1. 3 (COS— + lSln—) X 4 (COS— + lSln—)
12 12 12 12

T ., . T 2T . . 2T
2. 2 (cos— + lSlIl—) X 3 (cos— — lsm—)
15 15 5 5




3. Write in the form re'?:

T . . TIT
Z(COSE+l smE)

5T . . 5
\/E(cos?nﬂ sm?n)

Test Your Understanding

If z = 5v/3 — 5i, find:
(a) |z

Ifw =2 (cosg + isin%), find:

(c)

w
VA

(b) arg(z) in terms of

@ sl
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De Moivre’s Theorem

Example

Prove by induction that z" = r"*(cosnf + i sinnf)




De Moivre’s Theorem: Exponential Form

Examples
(cosg—n+i sing—n)5
1. Simplify — L
coOS— — isinz—n)
17 17

2. Express (1 ++3 i)7 in the form x + iy where x,y € R.



Test your understanding

z=-8+(8V3)i
(a) Find the modulus of = and the argument of =. (3)
Using de Moivre's theorem,
(b) find 2, (2)
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Applications of de Moivre’s

Trig identities

De Moivre’s theorem can be used to give multiple angle expressions (cos n8 / sinn@) in

terms of powers, and to express powers of sin and cos in terms of multiple angles. This is
useful in integration.

We derive these identities by applying the binomial expansion to (C059 + isine)n

Recap

(@a+b)*=a"+(7)a" b + (Z)a(n‘z)b2+....

a) Expressing cos n6 and sin n@ in terms of powers of cos 6

Example

Express cos 36 in terms of powers of cos 6



Test Your understanding

1. Express cos 60 in terms of cos 0



2. (a) Use de Moivre’s theorem to show that (5)
sin50 = 16sin® 0 — 20sin® @ + 5sin @

Hence, given also that sin 36 = 3sinf — 4sin> 4
(b) Find all the solutions of
sin568 = 5sin 36
in the interval 0 < @ < 2m. Give your answers to 3 decimal places. (6)



b. Finding expressions for sin” 6 and cos™ @

Exponential Form




Examples

1. Express cos® 0 in the form a cos 50 + b cos 30 + c cos 0

2. Prove that sin3 6 = — i sin 30 + %sin 0



Test Your Understanding

a) Express sin* 0 in the form a cos 40 + b cos 20 + ¢

(b) Hence find the exact value of |2 sin* 0 do
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Sum of Series

We can extend our knowledge of geometric series into complex numbers,
where the same formulae hold true.

Forw,z € C,

w(z" - 1)
Z;}:_OlWZr =w+wz + WZZ + ... 4 WZn_l — -
Z_
Llowzl =w+wz+ wz? + 4wzt 1 = %

provided |z| < 1

Remember:

z" —z™™ = 2isinnf

Thus if we had an expression of the form e
i0
1, we could cleverly factorise out e 2 (i.e. half
the power) to get

o6 _i6
eZ(eZ—e 2)

o 0
2 (2isin(=
o e (‘Sm<2>)

~_ Thus where e? — 1 occurs in a fraction,

i0 _

i6

multiply numerator and denominator by e 2
i0 i0

so that we have justez —e 2



Example

Given that z = cosg + i sin %, where n is a positive integer, show that

114
1+z+2*2+--+2"1= 1+icot(—)
2n



Practise the factorising.........

3
821‘9_1='

4e'f

et _ 1 -

i0

e3 —1

Using mod-arg form to split summations

e'f + e210 4 310 1 ... 4 ™9 js 3 geometric series,

17] nio

, , , ) el%(e"? — 1

. elf + @20 4 310 4 ... 4 onif — ('e )
el —1




Converting each exponential term to modulus-argument form would allow us
to consider the real and imaginary parts of the series separately:

Example

S =e% +e20 30 1 ... + €89 for @ # 2nm, where n is an integer.
9i0
2 sin40

(a) Show that S = e~ == 512

in-
Siny

Let P = cos 0 + cos20 + cos30 + -+ cos80 and Q = sin 0 + sin 20 +
-+ sin 860

90 0
(b) Use your answer to part a to show that P = cos ~ sin 40 cosec and

find similar expressions for Q and %



Example
(i) Show that (2+e"”)(2+e-"”]:5+4ms&_
sing sm2f sn3¢  sindd

— + — +

(i) Let S= Tt

cosf cos2f8 cos3f  cosdd
.
2 2 2

By considering ' —15 where C=1- -
2sin@

showthat §=—
5+4cosé



Applications of De’Moivre’s Theorem 2: Roots

De Moivre’s theorem also holds true for rational powers. We can use De
Moivre’s to solve equations of the form z" = w, where z, w € C. This is
equivalent to finding the nth roots of w

The fundamental theorem of algebra holds true for complex numbers:
Hence z"™ = w, where z,w € C has n distinct roots.
If w =1 we call these roots of unity.

To find the roots of a complex equation we use the fact that the argument of a
complex number is not unique:

If z* = r"*(cosnB + isinnf) then z = r(cos(6 + 2Km) + isin(6 + 2km))

Roots of Unity Example

Solvez3 =1

Method 1: By factorising Method 2: De Moivre’s



Notice:

e The first root will always be 1 since 1" =1

k
e We add ZTn to the argument but leave the modulus unchanged e.g.

.2 )
when n = 3 we rotate the line ?n each time. When k = n we have

2
rotated % = 2m so we get back to where we started.

e The first rootis z1=1, call the second root z; = w. Then...

Ww=r (cos (27”) + isin (27”)) r=1

Consider w? =

What do you notice?

What would z3 be?

Zy

>

Z3

The roots of z™ = 1 can be represented as 1, w, w?, where w = en .

Since the resultant ‘vector’ is 0, then 1 + w + w? = 0

These roots form the vertices of a regular n-gon and all lie on a circle,

radius r.



Generalnth Roots: 2" =w,w # 1

We can use a similar method when w is not equal to 1. Again, our first step is to
write w in mod-arg form and consider multiples of the argument.

Example
Solve z* = 2 + 2V3 i



Test your understanding

a) Express the complex number —2 + (2\/§)i in the formr(cos 0 +isin0), -t < 6 <

Tt.

b) Solve the equation
z* = -2+ (2V3)i

giving the roots in the form r(cos© + isin0), —m < 6 < m. (5)

(3)
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Solving Geometric Problems

We have already seen in the previous exercise that the roots of an equation
such as that below give evenly spaced points in the Argand diagram, because

: .2
the modulus remained the same but we kept adding 7” to the argument.

These points formed a regular hexagon, and in general for z" = s, form a
regular n-agon.

Recall that w is the first root of unity of z" = 1:

w = COS (2_n) + i sin (Z—H)
n n

This has modulus 1 and argument 27”

z® =7 + 24i

0r 3 4 Reiz)

Suppose z; was the first root of z6 = 7 + 24i. Then consider the product z; w.
What happens? Why does this work?



If z, is one root of the equation z% = s,

and 1, w, w?, ..., w" ! are the nth roots of unity,

then the roots of z™ = s are given by

2 n—-1
Z1,Z1W, Z1 W%, ..., Z 0" .




Example

The point P(\/§, 1) lies at one vertex of an equilateral triangle. The centre of
the triangle is at the origin.

(a) Find the coordinates of the other vertices of the triangle.

(b) Find the area of the triangle.

Test your understanding

An equilateral triangle has its centroid located at the origin and a vertex
at (1,0). What are the coordinates of the other two vertices?
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