 Chapter 1
Complex Numbers

Chapter Overview
1. Exponential form of a complex number
2. Multiplying and dividing complex numbers
3. De Moivre’s Theorem
4. De Moivre’s for Trigonometric Identities
a) Expressing /  in terms of powers of 
b) Finding expressions for  and 
5. Roots
6. Sums of series
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Recap: Mod/ arg form
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Exponential Form
We’ve seen the Cartesian form a complex number  and the modulus-argument form . But wait, there’s a third form! 
In the later chapter on Taylor expansions, you’ll see that you that you can write functions as an infinitely long polynomial:




It looks like the  and  somehow add to give . The one problem is that the signs don’t quite match up.
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	Exp Form

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


Exponential form       


Example
Use  to show that 
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Multiplying and Dividing Complex Numbers



Examples

1. 







2. 



3. Write in the form :
       








Test Your Understanding
If , find: 
(a)  					(b)  in terms of 				


If find:
(c) 					(d) 			
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De Moivre’s Theorem


Example
Prove by induction that 


















De Moivre’s Theorem: Exponential Form


Examples
1. Simplify 









2. Express  in the form  where .






Test your understanding
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Applications of de Moivre’s

Trig identities
De Moivre’s theorem can be used to give multiple angle expressions (/ )  in terms of powers, and to express powers of sin and cos in terms of multiple angles. This is useful in integration. 
We derive these identities by applying the binomial expansion to
Recap
+….

a) Expressing and   in terms of powers of 

Example
Express  in terms of powers of 















Test Your understanding

1. Express  in terms of 
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b. Finding expressions for  and 



Exponential Form





Examples
1. Express  in the form 











2. Prove that 












Test Your Understanding
a) Express  in the form 
(b) Hence find the exact value of 
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Sum of Series
We can extend our knowledge of geometric series into complex numbers, where the same formulae hold true.For ,




 

provided 


IMPORTANT: One of 


Remember:

Thus if we had an expression of the form , we could cleverly factorise out  (i.e. half the power) to get

Thus where  occurs in a fraction, multiply numerator and denominator by  so that we have just 















Example
Given that , where  is a positive integer, show that
























Practise the factorising……...
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Using mod-arg form to split summations
 is a geometric series,


Converting each exponential term to modulus-argument form would allow us to consider the real and imaginary parts of the series separately:

Example
, for , where  is an integer.
(a) Show that 
Let  and 
(b) Use your answer to part a to show that  and find similar expressions for  and 

















Example
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Applications of De’Moivre’s Theorem  2: Roots
De Moivre’s theorem also holds true for rational powers. We can use De Moivre’s to solve equations of the form , where . This is equivalent to finding the nth roots of 

The fundamental theorem of algebra holds true for complex numbers:
Hence  , where  has n distinct roots. 
If w = 1 we call these roots of unity. 
To find the roots of a complex equation we use the fact that the argument of a complex number is not unique:
If then )

Roots of Unity Example
Solve 
Method 1: By factorising                                                       Method 2: De Moivre’s












Notice:
· The first root will always be 1 since 

· We add  to the argument but leave the modulus unchanged e.g. when  we rotate the line  each time. When  we have rotated  so we get back to where we started.


· The first root is z1 = 1, call the second root z2 = . Then…

       

Consider  

                        

                        

[image: ]What do you notice? 


What would z3 be?







The roots of can be represented as 
Since the resultant ‘vector’ is 0, then 

These roots form the vertices of a regular n-gon and all lie on a circle, radius r. 

General nth Roots: 

We can use a similar method when w is not equal to 1. Again, our first step is to write w in mod-arg form and consider multiples of the argument. 

Example
Solve 





























Test your understanding

a) Express the complex number  in the form , .						         (3)
b) Solve the equation
giving the roots in the form , .  (5)
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Solving Geometric Problems

We have already seen in the previous exercise that the roots of an equation such as that below give evenly spaced points in the Argand diagram, because the modulus remained the same but we kept adding  to the argument.

These points formed a regular hexagon, and in general for , form a regular -agon.

Recall that  is the first root of unity of : 
.
This has modulus 1 and argument .

[image: ]









Suppose  was the first root of . Then consider the product . What happens?  Why does this work?

















If  is one root of the equation , 
and  are the th roots of unity, 
then the roots of  are given by 
.
















Example
The point  lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.
(a) Find the coordinates of the other vertices of the triangle.
(b) Find the area of the triangle.











Test your understanding

An equilateral triangle has its centroid located at the origin and a vertex at (1,0). What are the coordinates of the other two vertices?
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