## CP1 Chapter 8

## Proof by Induction

## Chapter Overview

## 1. Summation Proofs

2. Divisibility Proofs
3. Matrix proofs

| Topic | What students need to learn: |  |  |
| :---: | :---: | :---: | :---: |
|  | Content |  | Guidance |
| 1 <br> Proof | 1.1 | Construct proofs using mathematical induction. <br> Contexts include sums of series, divisibility and powers of matrices. | To include induction proofs for <br> (i) summation of series <br> e.g. show $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ <br> or <br> show $\sum_{r=1}^{n} r(r+1)=\frac{n(n+1)(n+2)}{3}$ <br> (ii) divisibility e.g. show $3^{2 n}+11$ is divisible by 4 <br> (iii) matrix products e.g. show $\left(\begin{array}{ll} 3 & -4 \\ 1 & -1 \end{array}\right)^{n}=\left(\begin{array}{cc} 2 n+1 & -4 n \\ n & 1-2 n \end{array}\right)$ |

## What is poof by induction?

We can often use proof by induction whenever we want to show some property holds for all integers (usually positive) up to infinity.

Example
Show that $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$ for all $n \in \mathbb{N}$.

We can show this is true for certain examples. However, no number of examples are sufficient to show the statement is true for all integers $n$.

The key part of induction is that we need to show that "if the statement is true for a particular value, then it is true for the next value".

Basic Example:
Prove by induction that if the first term of a sequence is $a_{1}=3$ and $a_{n+1}=a_{n}+2$, then every term in the sequence is odd.

## Proof by induction:

Step 1: Basis: Prove the general statement is true for $n=1$.
Step 2: Assumption: Assume the general statement is true for $n=k$.
Step 3: Inductive: Show that the general statement is then true for $n=k+1$.
Step 4: Conclusion: The general statement is then true for all positive integers $n$.

## Type 1: Summation Proofs

Example 1: Show that $\sum_{r=1}^{n}(2 r-1)=n^{2}$ for all $n \in \mathbb{N}$.

Basis step:

Assumption:

Inductive:

## Conclusion step - key points

(For method mark)
Any 3 of these seen anywhere in the proof:

- "true for $n=1 "$
- "assume true for $n=k "$
- "true for $n=k+1 "$
- "true for all $\boldsymbol{n} /$ positive integers"

Example 2. Prove by induction that for all positive integers $n$,

$$
\sum_{r=1}^{n} r 2^{r}=2\left(1+(n-1) 2^{n}\right)
$$

## Test Your Understanding

8. (a) Prove by induction that, for any positive integer $n$,

$$
\begin{equation*}
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2} . \tag{5}
\end{equation*}
$$

## Type 2: Divisibility Proofs

There are different techniques for the inductive step. For the following example we will consider 2 different methods.

Example
Prove by induction that $3^{2 n}+11$ is divisible by 4 for all positive integers $n$.

Basis step:

Assumption:

Inductive step: method 1

Example:
Prove by induction that $8^{n}-3^{n}$ is divisible by 5 .

Question:
Prove by induction that $n^{3}-7 n+9$ is divisible by 3 for all positive integers $n$.

## Type 3: Matrix Proofs

## Example

Prove by induction that $\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)^{n}=\left(\begin{array}{cc}1 & 1-2^{n} \\ 0 & 2^{n}\end{array}\right)$ for all $n \in \mathbb{Z}^{+}$.

## Example

Prove by induction that $\left(\begin{array}{ll}-2 & 9 \\ -1 & 4\end{array}\right)^{n}=\left(\begin{array}{cc}-3 n+1 & 9 n \\ -n & 3 n+1\end{array}\right)$ for all $n \in \mathbb{Z}^{+}$.

Be the examiner!

How many marks does this deserve??
6. Prove by induction that for all positive integers $n$

$$
\mathrm{f}(n)=3^{2 n+4}-2^{2 n}
$$

is divisible by 5

Let

$$
f(1)^{x}=3^{2(1)+4}-2^{(1)}=3^{6}-2^{2}=729-4=725=145 \times 5
$$

$\therefore f(x)$ divisible by 5 when $x=1$
Assume true for $u=k$ :

$$
5 \mid f(k) \Rightarrow f(k)=3^{2 k+4 m}-2^{2 k}=5 a \quad \text { where } \quad a \in \mathbb{N}
$$

Consider $f(k+1):{ }^{n}$

$$
\begin{aligned}
& f(k+1)=3^{2(k+1)+4}-2^{2(k+1)}=3^{2 k+6}-2^{2 k+2}=9\left(3^{2 k+4}\right)-4\left(2^{2 k}\right) \\
& \Rightarrow f(k+1)=9\left(3^{2 k+4}-2^{2 k}\right)+5\left(2^{2 k}\right)=9 f(k)+5\left(2^{2 k}\right)=5\left(a_{a}+2^{2 k}\right) \\
& \text { nat (k) divisill by } 5 \text { f(h+1) divisible by } 5
\end{aligned}
$$

Since true for $n=1 \Rightarrow$ true for $\forall n \in \mathbb{Z}^{+}$by mathematical induction.

