Core Pure 1 Complex Numbers

Chapter Overview

- **1**: Understand and manipulate (\times , \div) complex numbers.
- 2: Find complex solutions to quadratic equations.
- 3: Find complex solutions to cubic and quartic equations.

2 Complex numbers	2.1	Solve any quadratic equation with real coefficients. Solve cubic or quartic equations with real coefficients.	Given sufficient information to deduce at least one root for cubics or at least one complex root or quadratic factor for quartics, for example: (i) $f(z) = 2z^3 - 5z^2 + 7z + 10$ Given that $2z - 3$ is a factor of $f(z)$, use algebra to solve $f(z) = 0$ completely. (ii) $g(x) = x^4 - x^3 + 6x^2 + 14x - 20$ Given $g(1) = 0$ and $g(-2) = 0$, use algebra to solve $g(x) = 0$ completely.
	2.2	Add, subtract, multiply and divide complex numbers in the form $x + iy$ with x and y real. Understand and use the terms 'real part' and 'imaginary part'.	Students should know the meaning of the terms, 'modulus' and 'argument'.
2 Complex numbers continued	2.3	Understand and use the complex conjugate. Know that non- real roots of polynomial equations with real coefficients occur in conjugate pairs.	Knowledge that if z_1 is a root of $f(z) = 0$ then z_1^* is also a root.
	2.4	Use and interpret Argand diagrams.	Students should be able to represent the sum or difference of two complex numbers on an Argand diagram.
	2.5	Convert between the Cartesian form and the modulus- argument form of a complex number.	Knowledge of radians is assumed.
	2.6	Multiply and divide complex numbers in modulus argument form.	Knowledge of the results $\begin{vmatrix} z_1 z_2 \end{vmatrix} = \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}, \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$ arg $(z_1 z_2) = \arg z_1 + \arg z_2$ arg $\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$ Knowledge of radians and compound angle formulae is assumed.

Examples: Write the following in terms of *i*

$$\sqrt{(-36)} = \sqrt{-1} =$$

$$\sqrt{-4} = \sqrt{-7} =$$

Simplify:

(2+3i) + (4+i) =

$$i - 3(2 - i) =$$

$$\frac{10+4i}{2}$$
 =

Solving Quadratic Equations

Examples

1. Solve $z^2 + 25 = 0$

2. Solve $z^2 + 3z + 5 = 0$

Exercise 1A/B Page 3 – 5 Examples

- 1. Express each of the following in the form a + bi, where a, b are integers.
- a. (2+3i)(3-2i)

- b. $(5-3i)^2$
- 2. Determine the value of i^3 , i^4 , i^{101} and $(3i)^5$

Test Your Understanding:

1. Edexcel FP1 June 2010

z = 2 - 3i

(a) Show that
$$z^2 = -5 - 12i$$
. (2)

2. Expand and simplify $(1 + i)^3$

Exercise 1C Page 6

Complex conjugates

Example:

Write $\frac{5+4i}{2-3i}$ in the form a + bi

Test Your Understanding

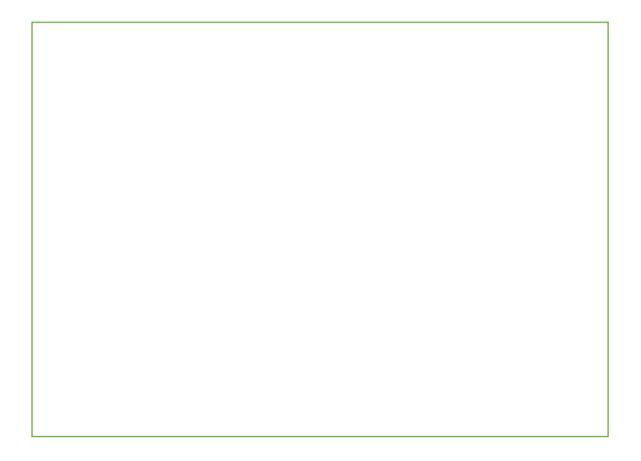
Given that $z_1 = 3 + 2i$ and $z_2 = \frac{12 - 5i}{z_1}$,

(a) find z_2 in the form a + ib, where a and b are real. (2)

Exercise 1D Page 7-8

Roots of Polynomials

Roots of Quadratics



Example:

Find the quadratic equation with roots $\alpha = 2 + 4i$ and $\beta = 2 - 4i$ in the form $x^2 + ax + b = 0$

(2 Methods)

[Textbook] Given that $\alpha = 7 + 2i$ is one of the roots of a quadratic equation with real coefficients,

(a) state the value of the other root, β .

(b) find the quadratic equation.

Proof that Complex Roots Appear in Complex Pairs

Proof 1

Proof 2

Test Your Understanding

Given that 2-4i is a root of the equation

$$z^2 + pz + q = 0,$$

where p and q are real constants,

- (a) write down the other root of the equation, (1)
- (b) find the value of p and the value of q.

(3)

Exercise 1E Page 9 -10

Roots of Cubic and Quartic Equations

Cubics

Quartics

Examples

1. [Textbook] Given that 3 + i is a root of the quartic equation

 $2z^4 - 3z^3 - 39z^2 + 120z - 50 = 0$, solve the equation completely.

2. [Textbook] Show that $z^2 + 4$ is a factor of $z^4 - 2z^3 + 21z^2 - 8z + 68$. Hence solve the equation $z^4 - 2z^3 + 21z^2 - 8z + 68 = 0$

Test Your Understanding:

Given that 2 and 5 + 2i are roots of the equation

$$x^3 - 12x^2 + cx + d = 0$$
, $c, d \in \mathbb{R}$,

(a) write down the other complex root of the equation. (1)

(b) Find the value of c and the value of d.

(5)