Core Pure 1

Complex Numbers

Chapter Overview

1: Understand and manipulate (\times, \div) complex numbers.
2: Find complex solutions to quadratic equations.
3: Find complex solutions to cubic and quartic equations.
$\left.\begin{array}{|l|l|l|l}\hline 2 & 2.1 & \begin{array}{l}\text { Solve any } \\ \text { quadratic } \\ \text { equation with real } \\ \text { Coefficients. } \\ \text { numbers }\end{array} & \begin{array}{l}\text { Solve cubic or } \\ \text { quartic equations } \\ \text { with real } \\ \text { coefficients. }\end{array}\end{array} \begin{array}{l}\text { Given sufficient information to deduce at } \\ \text { least one root for cubics or at least one } \\ \text { complex root or quadratic factor for } \\ \text { quartics, for example: } \\ \text { (i) } \mathrm{f}(z)=2 z^{3}-5 z^{2}+7 z+10 \\ \text { Given that } 2 z-3 \text { is a factor of } \mathrm{f}(z), \text { use } \\ \text { algebra to solve } \mathrm{f}(z)=0 \text { completely. } \\ \text { (ii) } \mathrm{g}(x)=x^{4}-x^{3}+6 x^{2}+14 x-20 \\ \text { Given } \mathrm{g}(1)=0 \text { and } \mathbf{g}(-2)=0, \text { use algebra } \\ \text { to solve } \mathrm{g}(x)=0 \text { completely. }\end{array}\right]$

2 Complex numbers continued	2.3	Understand and use the complex conjugate. Know that nonreal roots of polynomial equations with real coefficients occur in conjugate pairs.	Knowledge that if z_{1} is a root of $\mathrm{f}(z)=0$ then z_{1}^{*} is also a root.
	2.4	Use and interpret Argand diagrams.	Students should be able to represent the sum or difference of two complex numbers on an Argand diagram.
	2.5	Convert between the Cartesian form and the modulusargument form of a complex number.	Knowledge of radians is assumed.
	2.6	Multiply and divide complex numbers in modulus argument form.	Knowledge of the results $\begin{aligned} & \left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|,\left\|\frac{z_{1}}{z_{2}}\right\|=\frac{\left\|z_{1}\right\|}{\left\|z_{2}\right\|} \\ & \arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \\ & \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2} \end{aligned}$ Knowledge of radians and compound angle formulae is assumed.

Complex Number Basics

Examples: Write the following in terms of i
$\sqrt{ }(-36)=$
$\sqrt{-1}=$
$\sqrt{-4}=$
$\sqrt{-7}=$

Simplify:
$(2+3 i)+(4+i)=$
$i-3(2-i)=$
$\frac{10+4 i}{2}=$

Solving Quadratic Equations

Examples

1. Solve $z^{2}+25=0$
2. Solve $z^{2}+3 z+5=0$

Multiplying Complex Numbers

Examples

1. Express each of the following in the form $a+b i$, where a, b are integers.
a. $(2+3 i)(3-2 i)$
b. $(5-3 i)^{2}$
2. Determine the value of i^{3}, i^{4}, i^{101} and (3i) ${ }^{5}$

Test Your Understanding:

1. Edexcel FP1 June 2010

$$
\begin{equation*}
\mathrm{z}=2-3 \mathrm{i} \tag{2}
\end{equation*}
$$

(a) Show that $z^{2}=-5-12 \mathrm{i}$.
2. Expand and simplify $(1+i)^{3}$

Complex conjugates

Example:
Write $\frac{5+4 i}{2-3 i}$ in the form $a+b i$

Test Your Understanding

Given that $z_{1}=3+2 \mathrm{i}$ and $z_{2}=\frac{12-5 \mathrm{i}}{z_{1}}$,
(a) find z_{2} in the form $a+\mathrm{i} b$, where a and b are real.

Roots of Polynomials
\square

Roots of Quadratics
\square

Example:

Find the quadratic equation with roots $\alpha=2+4 i$ and $\beta=2-4 i$ in the form $x^{2}+a x+b=0$
(2 Methods)
[Textbook] Given that $\alpha=7+2 i$ is one of the roots of a quadratic equation with real coefficients,
(a) state the value of the other root, β.
(b) find the quadratic equation.

Proof that Complex Roots Appear in Complex Pairs

Proof 1

Proof 2

\square

Test Your Understanding

Given that $2-4 \mathrm{i}$ is a root of the equation

$$
z^{2}+p z+q=0
$$

where p and q are real constants,
(a) write down the other root of the equation,
(b) find the value of p and the value of q.

Roots of Cubic and Quartic Equations

Cubics
\square
Quartics
\square

Examples

1. [Textbook] Given that $3+i$ is a root of the quartic equation $2 z^{4}-3 z^{3}-39 z^{2}+120 z-50=0$, solve the equation completely.
2. [Textbook] Show that $z^{2}+4$ is a factor of $z^{4}-2 z^{3}+21 z^{2}-8 z+68$. Hence solve the equation $z^{4}-2 z^{3}+21 z^{2}-8 z+68=0$

Test Your Understanding:

Given that 2 and $5+2 i$ are roots of the equation

$$
x^{3}-12 x^{2}+c x+d=0, \quad c, d \in \mathbb{R},
$$

(a) write down the other complex root of the equation.
(b) Find the value of c and the value of d.

