9.6) Finding perpendiculars

Worked example	Your turn
Find the shortest distance between the parallel lines with equations: $r = 2i - j + 6k + \lambda(3i + 4j + 5k)$ and $r = 3j - k + \mu(6i + 8j + 10k)$, Where λ and μ are scalars	Find the shortest distance between the parallel lines with equations: $r = i + 2j - k + \lambda(5i + 4j + 3k)$ and $r = 2i + k + \mu(5i + 4j + 3k)$, Where λ and μ are scalars
	$\frac{21\sqrt{2}}{10}$

Worked example

Your turn

The lines l_1 and l_2 have equations

$$r = \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\0 \end{pmatrix} \text{ and } r = \begin{pmatrix} 1\\3\\-1 \end{pmatrix} + \mu \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

respectively, where λ and μ are scalars. Find the shortest distance between these two lines. The lines l_1 and l_2 have equations

$$r = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\1 \end{pmatrix} \text{ and } r = \begin{pmatrix} -1\\3\\-1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$$

respectively, where λ and μ are scalars. Find the shortest distance between these two lines. $2\sqrt{2}$

Worked example	Your turn
 The line <i>l</i> has equation \$\frac{x-1}{-2} = \frac{y-1}{2} = \frac{z+3}{1}\$, and the point <i>A</i> has coordinates (-1,2,1). (a) Find the shortest distance between <i>A</i> and <i>l</i>. (b) Find the Cartesian equation of the line that is perpendicular to <i>l</i> and passes through <i>A</i>. 	 The line <i>l</i> has equation \$\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+3}{-1}\$, and the point <i>A</i> has coordinates (1,2, -1). (a) Find the shortest distance between <i>A</i> and <i>l</i>. (b) Find the Cartesian equation of the line that is perpendicular to <i>l</i> and passes through <i>A</i>.

(a)
$$\frac{\sqrt{29}}{3}$$

(b) $\frac{x-1}{8} = \frac{y-2}{1} = \frac{z+1}{14}$