9.6) Finding perpendiculars

Your turn

Find the shortest distance between the parallel lines with equations:
$\boldsymbol{r}=2 \boldsymbol{i}-\boldsymbol{j}+6 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}+5 \boldsymbol{k})$ and
$\boldsymbol{r}=3 \boldsymbol{j}-\boldsymbol{k}+\mu(6 \boldsymbol{i}+8 \boldsymbol{j}+10 \boldsymbol{k})$, Where λ and μ are scalars

Find the shortest distance between the parallel lines with equations:
$\boldsymbol{r}=\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}+\lambda(5 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$ and
$\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{k}+\mu(5 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$,
Where λ and μ are scalars

$$
\frac{21 \sqrt{2}}{10}
$$

Your turn

The lines l_{1} and l_{2} have equations $r=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $r=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$ respectively, where λ and μ are scalars. Find the shortest distance between these two lines.

The lines l_{1} and l_{2} have equations
$r=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ and $r=\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
respectively, where λ and μ are scalars.
Find the shortest distance between these two lines.

$$
2 \sqrt{2}
$$

The line l has equation $\frac{x-1}{-2}=\frac{y-1}{2}=\frac{z+3}{1}$, and the point A has coordinates $(-1,2,1)$.
(a) Find the shortest distance between A and l.
(b) Find the Cartesian equation of the line that is perpendicular to l and passes through A.

The line l has equation $\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}$, and the point A has coordinates $(1,2,-1)$.
(a) Find the shortest distance between A and l.
(b) Find the Cartesian equation of the line that is perpendicular to l and passes through A.
(a) $\frac{\sqrt{29}}{3}$
(b) $\frac{x-1}{8}=\frac{y-2}{1}=\frac{z+1}{14}$

