9.5) Points of intersection

Worked example	Your turn
The lines l_1 and l_2 have vector equations	The lines l_1 and l_2 have vector equations
$r = i + 2j + 3k + \lambda(4i - 3j - 2k)$ and	$r = 3i + j + k + \lambda(i - 2j - k)$ and
$r = -3i - 2k + \mu(-4i + 8j + 9k)$ respectively.	$r = -2j + 3k + \mu(-5i + j + 4k)$ respectively.
Show that the two lines intersect, and find the	Show that the two lines intersect, and find the
position vector of the point of intersection.	position vector of the point of intersection.

(5, -3, -1)

Worked example	Your turn
Find the point of intersection of the line l and the plane Π where: $l: \mathbf{r} = -2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 7\mathbf{k})$ $\Pi: \mathbf{r} \cdot (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 5$	Find the point of intersection of the line l and the plane Π where: $l: \mathbf{r} = -\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ $\Pi: \mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 4$
	(1,3,-1)

Worked example

A line has Cartesian equation

$$\frac{x-3}{-5} = \frac{y+2}{-3} = \frac{4-z}{-1}$$

A plane Π has Cartesian equation

$$-4x - 3y + 2z = 10$$

Find the position vector of the point of intersection of the line and the plane.

Your turn

A line has Cartesian equation

$$\frac{x-3}{5} = \frac{y+2}{3} = \frac{4-z}{1}$$

A plane Π has Cartesian equation

$$4x + 3y - 2z = -10$$

Find the position vector of the point of intersection of the line and the plane.

$$\left(\frac{53}{31}, -\frac{86}{31}, \frac{132}{32}\right)$$

Worked example	Your turn
The lines l_1 and l_2 have equations $\frac{x-3}{2} = y - 4 = \frac{z-1}{-5}$ and $\frac{x-1}{3} = \frac{y+2}{-7} = z - 5$ respectively. Prove that l_1 and l_2 are skew.	The lines l_1 and l_2 have equations $\frac{x-2}{4} = \frac{y+3}{2} = z - 1$ and $\frac{x+1}{5} = \frac{y}{4} = \frac{z-4}{-2}$ respectively. Prove that l_1 and l_2 are skew. Proof