9.5) Points of intersection

Your turn

The lines l_{1} and l_{2} have vector equations $r=i+2 j+3 k+\lambda(4 i-3 j-2 k)$ and $r=-3 i-2 k+\mu(-4 i+8 j+9 k)$ respectively. Show that the two lines intersect, and find the position vector of the point of intersection.

The lines l_{1} and l_{2} have vector equations
$r=3 i+j+k+\lambda(i-2 j-k)$ and
$r=-2 j+3 k+\mu(-5 i+j+4 k)$ respectively. Show that the two lines intersect, and find the position vector of the point of intersection.

$$
(5,-3,-1)
$$

Find the point of intersection of the line l and the plane Π where:
$l: r=-2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}+\lambda(2 \boldsymbol{i}-\boldsymbol{j}+7 \boldsymbol{k})$
П: $\boldsymbol{r} \cdot(3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k})=5$

Find the point of intersection of the line l and the plane Π where:
$l: \boldsymbol{r}=-\boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})$
П: $\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})=4$

$$
(1,3,-1)
$$

Your turn

A line has Cartesian equation

$$
\frac{x-3}{-5}=\frac{y+2}{-3}=\frac{4-z}{-1}
$$

A plane Π has Cartesian equation

$$
-4 x-3 y+2 z=10
$$

Find the position vector of the point of intersection of the line and the plane.

A line has Cartesian equation

$$
\frac{x-3}{5}=\frac{y+2}{3}=\frac{4-z}{1}
$$

A plane Π has Cartesian equation

$$
4 x+3 y-2 z=-10
$$

Find the position vector of the point of intersection of the line and the plane.

$$
\left(\frac{53}{31},-\frac{86}{31}, \frac{132}{32}\right)
$$

Your turn

The lines l_{1} and l_{2} have equations
$\frac{x-3}{2}=y-4=\frac{z-1}{-5}$ and $\frac{x-1}{3}=\frac{y+2}{-7}=z-5$
respectively. Prove that l_{1} and l_{2} are skew.

The lines l_{1} and l_{2} have equations
$\frac{x-2}{4}=\frac{y+3}{2}=z-1$ and $\frac{x+1}{5}=\frac{y}{4}=\frac{z-4}{-2}$
respectively. Prove that l_{1} and l_{2} are skew.

