9.4) Calculating angles between lines and planes

Worked example

Your turn

Find the acute angle between the line l with equation $\boldsymbol{r}=-5 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}+\lambda(-12 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$
and the plane with equation $\boldsymbol{r} \cdot(-\boldsymbol{i}-\mathbf{2} \boldsymbol{j}+2 \boldsymbol{k})=2$.

Find the acute angle between the line l with equation
$\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}-12 \boldsymbol{k})$
and the plane with equation $\boldsymbol{r} \cdot(2 \boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k})=2$.

$$
14.9^{\circ} \text { (3 sf) }
$$

Worked example

The plane P has equation

$$
r=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)
$$

a) Find a vector perpendicular to the plane P
b) The line l passes through the point $A(3,3,1)$ and meets P at $(2,1,3)$. The acute angle between the plane P and the line l is θ. Find θ to the nearest degree

The plane P has equation

$$
r=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

a) Find a vector perpendicular to the plane P
b) The line l passes through the point $A(1,3,3)$ and meets P at $(3,1,2)$. The acute angle between the plane P and the line l is θ. Find θ to the nearest degree

$$
\theta=63^{\circ}(\text { nearest degree })
$$

Find the acute angle between the planes:
$\Pi_{1}: \boldsymbol{r} \cdot(3 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})=4$
$\Pi_{2}: \boldsymbol{r} \cdot(2 \boldsymbol{i}+3 \boldsymbol{j})=7$

Find the acute angle between the planes:

$$
\begin{gathered}
\Pi_{1}: \boldsymbol{r} \cdot(4 \boldsymbol{i}+4 \boldsymbol{j}-7 \boldsymbol{k})=13 \\
\Pi_{2}: \boldsymbol{r} \cdot(7 \boldsymbol{i}-4 \boldsymbol{j}+4 \boldsymbol{k})=6 \\
\theta=78.6^{\circ}(1 \mathrm{dp})
\end{gathered}
$$

The lines l_{1} and l_{2} have Cartesian equations $\frac{x+6}{-1}=\frac{y-3}{2}=\frac{z-2}{3}$ and $\frac{x+8}{-2}=\frac{y-4}{3}=\frac{z+13}{-1}$ respectively. (a) Show that the point $A(-2,-5,-10)$ lies on both lines
(b) Find the size of the acute angle between the lines at A

The lines l_{1} and l_{2} have Cartesian equations $\frac{x-6}{-1}=\frac{y+3}{2}=\frac{z+2}{3}$ and $\frac{x+5}{2}=\frac{y-15}{-3}=\frac{z-3}{1}$ respectively.
(a) Show that the point $A(3,3,7)$ lies on both lines
(b) Find the size of the acute angle between the lines at A
(a) Shown
(b) $69.1^{\circ}(1 \mathrm{dp})$

