9.4) Calculating angles between lines and planes

Worked example	Your turn
Find the acute angle between the line <i>l</i> with equation $\mathbf{r} = -5\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(-12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$ and the plane with equation $\mathbf{r} \cdot (-\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = 2$.	Find the acute angle between the line l with equation $r = 2i + j - 5k + \lambda(3i + 4j - 12k)$ and the plane with equation $r \cdot (2i - 2j - k) = 2$.
	14.9° (3 sf)

Worked example

The plane P has equation

$$r = \begin{pmatrix} 2\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\0 \end{pmatrix} + \mu \begin{pmatrix} 2\\2\\3 \end{pmatrix}$$

- a) Find a vector perpendicular to the plane P
- b) The line l passes through the point A (3, 3, 1) and meets P at (2, 1, 3). The acute angle between the plane P and the line l is θ . Find θ to the nearest degree

Your turn

The plane P has equation

$$r = \begin{pmatrix} 3\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 0\\2\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\2\\2 \end{pmatrix}$$

- a) Find a vector perpendicular to the plane P
- b) The line *l* passes through the point
 A (1, 3, 3) and meets P at (3, 1, 2). The acute angle between the plane P and the line *l* is θ. Find θ to the nearest degree

 $\theta = 63^{\circ}$ (nearest degree)

Worked example	Your turn
Worked exampleFind the acute angle between the planes: $\Pi_1: \mathbf{r} \cdot (3\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4$ $\Pi_2: \mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j}) = 7$	Your turnFind the acute angle between the planes: $\Pi_1: \mathbf{r} \cdot (4\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}) = 13$ $\Pi_2: \mathbf{r} \cdot (7\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) = 6$ $\theta = 78.6^{\circ} (1 \text{ dp})$

Worked example	Your turn
The lines l_1 and l_2 have Cartesian equations	The lines l_1 and l_2 have Cartesian equations
$\frac{x+6}{-1} = \frac{y-3}{2} = \frac{z-2}{3}$ and $\frac{x+8}{-2} = \frac{y-4}{3} = \frac{z+13}{-1}$ respectively.	$\frac{x-6}{-1} = \frac{y+3}{2} = \frac{z+2}{3} \text{ and } \frac{x+5}{2} = \frac{y-15}{-3} = \frac{z-3}{1} \text{ respectively.}$ (a) Show that the point A (3, 3, 7) lies on both lines
(a) Show that the point $A(-2, -5, -10)$ lies on	(b) Find the size of the acute angle between the
both lines	lines at A
(b) Find the size of the acute angle between the	(a) Shown
lines at A	(b) 69.1° (1 dp)