9.2) Equation of a plane in three dimensions

A plane Π passes through the points $A(1,-2,2), B(-3,-2,1), C(5,4,3)$
Find the equation of the plane Π in the form $\mathrm{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$

A plane Π passes through the points

$$
A(2,2-1), B(3,2,-1), C(4,3,5)
$$

Find the equation of the plane Π in the form

$$
\begin{aligned}
& \mathrm{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c} \\
& r=2 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}+\lambda \boldsymbol{i}+\mu(2 \boldsymbol{i}+\boldsymbol{j}+6 \boldsymbol{k}) \\
& \quad r=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)
\end{aligned}
$$

Your turn

Verify that the point P with position vector $\left(\begin{array}{c}2 \\ -3 \\ 2\end{array}\right)$ lies in the plane with vector equation

$$
r=\left(\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Verify that the point P with position vector $\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$
lies in the plane with vector equation

$$
\begin{gathered}
r=\left(\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \\
\text { Shown }
\end{gathered}
$$

