Find the Cartesian equation of the line with vector equation $r=\left(\begin{array}{c}-4 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right)$.
equation $r=\left(\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)$.
Find the Cartesian equation of the line with vector

Find the Cartesian equation of the line with vector

$$
\text { equation } \begin{aligned}
\boldsymbol{r} & =\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right) \\
& \frac{x-4}{-1}=\frac{y-3}{2}=\frac{z+2}{5}
\end{aligned}
$$

Find the Cartesian equation of the line with vector equation $r=\left(\begin{array}{l}2 \\ 5 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$.

$$
\frac{x-2}{1}=\frac{y-5}{3}=\frac{z}{-2}
$$

Your turn

The Cartesian equation of a line is $\frac{x+2}{-3}=\frac{y}{-4}=\frac{z-5}{1}$. Find the vector form of the equation of the line.

The Cartesian equation of a line is $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z}{4}$. Find the vector form of the equation of the line.

$$
r=\left(\begin{array}{c}
2 \\
-5 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right)
$$

The Cartesian equation of a line is $\frac{2-x}{3}=\frac{y+3}{-1}=\frac{5-z}{-4}$. Find the vector form of the equation of the line.

Your turn

Show that the points $A(3,-4,-5), B(-3,1,-2) \quad$ Show that the points $A(-3,4,5), B(3,-1,2)$ and and $C(-9,6,1)$ are collinear

Shown

Your turn

The Cartesian equation of a line is $y=2 x-3$. Find the vector form of the equation of the line.

The Cartesian equation of a line is $y=3 x+2$. Find the vector form of the equation of the line.

$$
\binom{0}{2}+\lambda\binom{1}{3}
$$

The Cartesian equation of a line is $y=3 x-2$. Find the vector form of the equation of the line.

