9.1) Equation of a line in three dimensions

Worked example	Your turn
The straight line has vector equation $r = (i + 5j - 3k) + t(2i - j - 6k)$. Given that the point $(0, a, b)$ lines on l , find the value of a and the value of b .	The straight line has vector equation $r = (3i + 2j - 5k) + t(i - 6j - 2k)$. Given that the point $(a, b, 0)$ lines on l , find the value of a and the value of b . $a = \frac{1}{2}, b = 17$

Worked example	Your turn
The straight line <i>l</i> has vector equation $r = (1i + 4j - 3k) + \lambda(10i - 15j + 5k).$ Show that another vector equation of <i>l</i> is $r = (7i - 5j) + \mu(2i - 3j + k)$	The straight line <i>l</i> has vector equation $r = (2i + 5j - 3k) + \lambda(6i - 2j + 4k).$ Show that another vector equation of <i>l</i> is $r = (8i + 3j + k) + \mu(3i - j + 2k)$ $\begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ \therefore lines parallel Let $\lambda = 0 \rightarrow r = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ Let $\mu = -2 \rightarrow r = \begin{pmatrix} 8 + 3(-2) \\ 3 - (-2) \\ 1 + 2(-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ \therefore point in common Lines parallel and shared point \therefore same line

Worked example	Your turn
The line <i>l</i> has equation $r = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, and the point	The line <i>l</i> has equation $r = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, and the point
<i>P</i> has position vector $\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.	<i>P</i> has position vector $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$.
(a) Show that <i>P</i> does not lie on <i>l</i> .	(a) Show that P does not lie on l.
Given that a circle, centre P , intersects l at points A and B ,	Given that a circle, centre P , intersects l at points A and B ,
and that A has position vector $\begin{pmatrix} -6\\ 3\\ 0 \end{pmatrix}$,	and that A has position vector $\begin{pmatrix} 0\\ -3\\ 6 \end{pmatrix}$,
(b) find the possible position vectors of <i>B</i> .	(b) find the possible position vectors of <i>B</i> .
	(a) Shown (b) (−3, 3, 3) or (0, −3, 6)