9.1) Equation of a line in three dimensions

Your turn

The straight line has vector equation $r=$ $(i+5 j-3 k)+t(2 i-j-6 k)$. Given that the point $(0, a, b)$ lines on l, find the value of a and the value of b.

The straight line has vector equation $r=$ $(3 i+2 j-5 k)+t(i-6 j-2 k)$. Given that the point $(a, b, 0)$ lines on l, find the value of a and the value of b.

$$
a=\frac{1}{2}, b=17
$$

Your turn

The straight line l has vector equation $\boldsymbol{r}=(1 i+4 j-3 k)+\lambda(10 i-15 j+5 k)$. Show that another vector equation of l is

$$
\boldsymbol{r}=(7 i-5 j)+\mu(2 i-3 j+k)
$$

The straight line l has vector equation

$$
\boldsymbol{r}=(2 i+5 j-3 k)+\lambda(6 i-2 j+4 k)
$$

$$
\text { Show that another vector equation of } l \text { is }
$$

$$
\boldsymbol{r}=(8 i+3 j+k)+\mu(3 i-j+2 k)
$$

$$
\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right)=2\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

\therefore lines parallel

$$
\begin{aligned}
& \text { Let } \lambda=0->\mathrm{r}=\left(\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right) \\
& \text { Let } \mu=-2->r=\left(\begin{array}{c}
8+3(-2) \\
3-(-2) \\
1+2(-2)
\end{array}\right)=\left(\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right)
\end{aligned}
$$

\therefore point in common
Lines parallel and shared point \therefore same line

Your turn

The line l has equation $r=\left(\begin{array}{c}4 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right)$, and the point P has position vector $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
(a) Show that P does not lie on l.

Given that a circle, centre P, intersects l at points A and B, and that A has position vector $\left(\begin{array}{c}-6 \\ 3 \\ 0\end{array}\right)$,
(b) find the possible position vectors of B.

The line l has equation $r=\left(\begin{array}{c}-2 \\ 1 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$, and the point P has position vector $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$.
(a) Show that P does not lie on l.

Given that a circle, centre P, intersects l at points A and B, and that A has position vector $\left(\begin{array}{c}0 \\ -3 \\ 6\end{array}\right)$,
(b) find the possible position vectors of B.
(a) Shown
(b) $(-3,3,3)$ or $(0,-3,6)$

