9) Vectors

- 9.1) Equation of a line in three dimensions
- 9.2) Equation of a plane in three dimensions
- 9.3) Scalar product
- 9.4) Calculating angles between lines and planes
- 9.5) Points of intersection
- 9.6) Finding perpendiculars

9.1) Equation of a line in three dimensions **Chapter CONTENTS**

Worked example	Your turn
The straight line has vector equation $r = (i + 5j - 3k) + t(2i - j - 6k)$. Given that the point $(0, a, b)$ lines on l , find the value of a and the value of b .	The straight line has vector equation $r = (3i + 2j - 5k) + t(i - 6j - 2k)$. Given that the point $(a, b, 0)$ lines on l , find the value of a and the value of b . $a = \frac{1}{2}, b = 17$

The straight line <i>l</i> has vector equation $r = (1i + 4j - 3k) + \lambda(10i - 15j + 5k).$ Show that another vector equation of <i>l</i> is $r = (7i - 5j) + \mu(2i - 3j + k)$ The straight line <i>l</i> has vector equation $r = (2i + 5j - 3k) + \lambda(6i - 2j + 4k).$ Show that another vector equation of <i>l</i> is $r = (8i + 3j + k) + \mu(3i - j + 2k)$	Worked example	Your turn
$\begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ $\therefore \text{ lines parallel}$ Let $\lambda = 0 \rightarrow r = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ Let $\mu = -2 \rightarrow r = \begin{pmatrix} 8+3(-2) \\ 3-(-2) \\ 1+2(-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ $\therefore \text{ point in common}$ Lines parallel and shared point \therefore same lin	The straight line <i>l</i> has vector equation $r = (1i + 4j - 3k) + \lambda(10i - 15j + 5k).$ Show that another vector equation of <i>l</i> is $r = (7i - 5j) + \mu(2i - 3j + k)$	The straight line <i>l</i> has vector equation $r = (2i + 5j - 3k) + \lambda(6i - 2j + 4k).$ Show that another vector equation of <i>l</i> is $r = (8i + 3j + k) + \mu(3i - j + 2k)$ $\begin{pmatrix} 6 \\ -2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ \therefore lines parallel Let $\lambda = 0 \rightarrow r = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ Let $\mu = -2 \rightarrow r = \begin{pmatrix} 8 + 3(-2) \\ 3 - (-2) \\ 1 + 2(-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ \therefore point in common Lines parallel and shared point \therefore same line

Worked example	Your turn
The line <i>l</i> has equation $r = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, and the point	The line <i>l</i> has equation $r = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, and the point
<i>P</i> has position vector $\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.	<i>P</i> has position vector $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$.
(a) Show that <i>P</i> does not lie on <i>l</i> .	(a) Show that P does not lie on l.
Given that a circle, centre P , intersects l at points A and B ,	Given that a circle, centre P , intersects l at points A and B ,
and that A has position vector $\begin{pmatrix} -6\\ 3\\ 0 \end{pmatrix}$,	and that A has position vector $\begin{pmatrix} 0\\ -3\\ 6 \end{pmatrix}$,
(b) find the possible position vectors of <i>B</i> .	(b) find the possible position vectors of <i>B</i> .
	(a) Shown (b) (−3, 3, 3) or (0, −3, 6)

Worked example	Your turn
Find the Cartesian equation of the line with vector equation $\mathbf{r} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix}$.	Find the Cartesian equation of the line with vector equation $\mathbf{r} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$.
	$\frac{x-4}{-1} = \frac{y-3}{2} = \frac{z+2}{5}$
Find the Cartesian equation of the line with vector equation $r = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$.	Find the Cartesian equation of the line with vector equation $r = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$. $\frac{x-2}{1} = \frac{y-5}{3} = \frac{z}{-2}$

Worked example	Your turn
The Cartesian equation of a line is $\frac{x+2}{-3} = \frac{y}{-4} = \frac{z-5}{1}$. Find the vector form of the equation of the line.	The Cartesian equation of a line is $\frac{x-2}{3} = \frac{y+5}{-1} = \frac{z}{4}$. Find the vector form of the equation of the line.
	$r = \begin{pmatrix} 2\\-5\\0 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-1\\4 \end{pmatrix}$
The Cartesian equation of a line is $\frac{2-x}{3} = \frac{y+3}{-1} = \frac{5-z}{-4}$. Find the vector form of the equation of the line.	

Worked example	Your turn
Show that the points $A(3, -4, -5), B(-3, 1, -2)$ and $C(-9, 6, 1)$ are collinear	Show that the points $A(-3, 4, 5), B(3, -1, 2)$ and $C(9, 2, -1)$ are collinear
	Shown

Worked example	Your turn
The Cartesian equation of a line is $y = 2x - 3$. Find the vector form of the equation of the line.	The Cartesian equation of a line is $y = 3x + 2$. Find the vector form of the equation of the line. $\binom{0}{2} + \lambda \binom{1}{3}$
The Cartesian equation of a line is $y = 3x - 2$. Find the vector form of the equation of the line.	

9.2) Equation of a plane in three dimensions **Chapter CONTENTS**

Worked example	Your turn
A plane Π passes through the points A(1, -2, 2), B(-3, -2, 1), C(5, 4, 3) Find the equation of the plane Π in the form $r = a + \lambda b + \mu c$	A plane Π passes through the points A(2,2-1), B(3,2,-1), C(4,3,5) Find the equation of the plane Π in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ $r = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda \mathbf{i} + \mu(2\mathbf{i} + \mathbf{j} + 6\mathbf{k})$ $r = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$

Worked example	Your turn
Verify that the point <i>P</i> with position vector $\begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ lies in the plane with vector equation $r = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	Verify that the point <i>P</i> with position vector $\begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix}$ lies in the plane with vector equation $r = \begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1\\ -1\\ 2 \end{pmatrix}$ Shown

Worked example	Your turn
The plane Π is perpendicular to the normal	The plane Π is perpendicular to the normal
n = 2i - j + 3k and passes through the point P	n = 3i - 2j + k and passes through the point P
with position vector $4i - 8j + 7k$.	with position vector $8i + 4j - 7k$.
Find the Cartesian equation of Π .	Find the Cartesian equation of Π .

3x - 2y + z = 9

Worked example	Your turn
Show that the points $(3, 2, 2)$, $(3, 5, 1)$, $(-1, 3, 4)$ and $(-1, 6, 3)$ are coplanar.	Show that the points $(2, 2, 3)$, $(1, 5, 3)$, $(4, 3, -1)$ and $(3, 6, -1)$ are coplanar.
	Shown

Worked example	Your turn
Show that the points $(3, 2, 2)$, $(3, 5, 1)$, $(-1, 3, 4)$ and $(-1, 6, 4)$ are not coplanar.	Show that the points $(2, 2, 3)$, $(1, 5, 3)$, $(4, 3, -1)$ and $(4, 6, -1)$ are coplanar.
	Shown

9.3) Scalar product

Chapter CONTENTS

Worked example	Your turn
$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 5\\ -2\\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3\\ 3\\ 1 \end{pmatrix}$ 9
$\begin{pmatrix} a \\ 5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ b \\ 10 \end{pmatrix}$	

Worked example	Your turn
Find the acute angle between the vectors $\boldsymbol{a} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}$.	Find the acute angle between the vectors $a = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$. 70.64° (2 dp)
Find the angle between the vectors 2i + 4j - k and $j + 8k\begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} and \begin{pmatrix} 0 \\ 1 \\ 8 \end{pmatrix}$	Find the angle between the vectors -i + j + 3k and $7i - 2j + 2k96.9° (3 sf)$

Worked example	Your turn
If $A(5,3,2)$, $B(4,0,5)$ and $C(2,-3,4)$, find the area of triangle ABC	If $A(2,3,5)$, $B(5,0,4)$ and $C(4, -3,2)$, find the area of triangle ABC
	7.10 (3 sf)

Worked example	Your turn
Show that $\boldsymbol{a} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} -1 \\ 7 \\ -2 \end{pmatrix}$ are perpendicular.	Show that $\boldsymbol{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ are perpendicular.

Worked example	Your turn
Given that the vectors $a = 1i - 6j + 2k$ and $b = \lambda i - 2j + 5k$ are perpendicular, find the value of λ	Given that the vectors $a = 2i - 6j + k$ and $b = 5i + 2j + \lambda k$ are perpendicular, find the value of λ
	$\lambda = 2$

Worked example	Your turn
Show that the two lines are perpendicular: $I_1: r = (-9i + 10k) + \lambda(3i + 2j - k)$ $I_2: r = (-3i + 5k) + \mu(2i - j + 4k)$	Show that the two lines are perpendicular: $l_1: r = (-9i + 10k) + \lambda(2i + j - k)$ $l_2: r = (-3i + 5k) + \mu(3i - j + 5k)$
	Shown

Worked example	Your turn
Given that a = 2i - 5j + 4k and $b = -4 + 8j - 5k$, find a vector which is perpendicular to both a and b .	Given that a = -2i + 5j - 4k and $b = 4i - 8j + 5k$, find a vector which is perpendicular to both a and b .
	7 i + 6 j + 4 k

Worked example	Your turn
 Find, to the nearest tenth of a degree, the angle that the vector 9<i>i</i> - 5<i>j</i> + 3<i>k</i> makes with: The positive <i>x</i>-axis 	Find, to the nearest tenth of a degree, the angle that the vector $\mathbf{i} + 11\mathbf{j} - 4\mathbf{k}$ makes with: • The positive <i>z</i> -axis
	109.9° (1 dp)
• The positive <i>y</i> -axis	

Worked example	Your turn
 The points P, Q and R have coordinates (6, -1, 1), (4, 5, -2) and (-5, 3, 0) respectively. (a) Show that PQ is perpendicular to QR (b) Hence find the centre and radius of the circle that passes through points P, Q and R 	 The points P, Q and R have coordinates (1,-1,6), (-2,5,4) and (0,3,-5) respectively. (a) Show that PQ is perpendicular to QR (b) Hence find the centre and radius of the circle that passes through points P, Q and R
	(a) Shown (b) Centre $\left(\frac{1}{2}, 1, \frac{1}{2}\right)$, radius $\frac{\sqrt{138}}{2}$

9.4) Calculating angles between lines and planes **Chapter CONTENTS**

Worked example	Your turn
Find the acute angle between the line <i>l</i> with equation $\mathbf{r} = -5\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(-12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$ and the plane with equation $\mathbf{r} \cdot (-\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = 2$.	Find the acute angle between the line l with equation $r = 2i + j - 5k + \lambda(3i + 4j - 12k)$ and the plane with equation $r \cdot (2i - 2j - k) = 2$.
	14.9° (3 sf)

Worked example

The plane P has equation

$$r = \begin{pmatrix} 2\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\0 \end{pmatrix} + \mu \begin{pmatrix} 2\\2\\3 \end{pmatrix}$$

- a) Find a vector perpendicular to the plane P
- b) The line l passes through the point A (3, 3, 1) and meets P at (2, 1, 3). The acute angle between the plane P and the line l is θ . Find θ to the nearest degree

Your turn

The plane P has equation

$$r = \begin{pmatrix} 3\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} 0\\2\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\2\\2 \end{pmatrix}$$

- a) Find a vector perpendicular to the plane P
- b) The line *l* passes through the point
 A (1, 3, 3) and meets P at (3, 1, 2). The acute angle between the plane P and the line *l* is θ. Find θ to the nearest degree

 $\theta = 63^{\circ}$ (nearest degree)

Your turn
Your turnFind the acute angle between the planes: $\Pi_1: \mathbf{r} \cdot (4\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}) = 13$ $\Pi_2: \mathbf{r} \cdot (7\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) = 6$ $\theta = 78.6^{\circ} (1 \text{ dp})$

Worked example	Your turn
The lines l_1 and l_2 have Cartesian equations $\frac{x+6}{-1} = \frac{y-3}{2} = \frac{z-2}{3} \text{ and } \frac{x+8}{-2} = \frac{y-4}{3} = \frac{z+13}{-1} \text{ respectively.}$ (a) Show that the point $A(-2, -5, -10)$ lies on both lines (b) Find the size of the acute angle between the lines at A	The lines l_1 and l_2 have Cartesian equations $\frac{x-6}{-1} = \frac{y+3}{2} = \frac{z+2}{3} \text{ and } \frac{x+5}{2} = \frac{y-15}{-3} = \frac{z-3}{1} \text{ respectively.}$ (a) Show that the point A (3, 3, 7) lies on both lines (b) Find the size of the acute angle between the lines at A (a) Shown (b) 69.1° (1 dp)

9.5) Points of intersection

Chapter CONTENTS

Worked example	Your turn
The lines l_1 and l_2 have vector equations	The lines l_1 and l_2 have vector equations
$r = i + 2j + 3k + \lambda(4i - 3j - 2k)$ and	$r = 3i + j + k + \lambda(i - 2j - k)$ and
$r = -3i - 2k + \mu(-4i + 8j + 9k)$ respectively.	$r = -2j + 3k + \mu(-5i + j + 4k)$ respectively.
Show that the two lines intersect, and find the	Show that the two lines intersect, and find the
position vector of the point of intersection.	position vector of the point of intersection.

(5, -3, -1)

Worked example	Your turn
Find the point of intersection of the line l and the plane Π where: $l: \mathbf{r} = -2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 7\mathbf{k})$ $\Pi: \mathbf{r} \cdot (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 5$	Find the point of intersection of the line l and the plane Π where: $l: \mathbf{r} = -\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ $\Pi: \mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 4$
	(1,3,-1)

Worked example

A line has Cartesian equation

$$\frac{x-3}{-5} = \frac{y+2}{-3} = \frac{4-z}{-1}$$

A plane Π has Cartesian equation

$$-4x - 3y + 2z = 10$$

Find the position vector of the point of intersection of the line and the plane.

Your turn

A line has Cartesian equation

$$\frac{x-3}{5} = \frac{y+2}{3} = \frac{4-z}{1}$$

A plane Π has Cartesian equation

$$4x + 3y - 2z = -10$$

Find the position vector of the point of intersection of the line and the plane.

$$\left(\frac{53}{31}, -\frac{86}{31}, \frac{132}{32}\right)$$

Worked example	Your turn
The lines l_1 and l_2 have equations $\frac{x-3}{2} = y - 4 = \frac{z-1}{-5}$ and $\frac{x-1}{3} = \frac{y+2}{-7} = z - 5$ respectively. Prove that l_1 and l_2 are skew.	The lines l_1 and l_2 have equations $\frac{x-2}{4} = \frac{y+3}{2} = z - 1$ and $\frac{x+1}{5} = \frac{y}{4} = \frac{z-4}{-2}$ respectively. Prove that l_1 and l_2 are skew. Proof

9.6) Finding perpendiculars

Chapter CONTENTS

Worked example	Your turn
Find the shortest distance between the parallel lines with equations: $r = 2i - j + 6k + \lambda(3i + 4j + 5k)$ and $r = 3j - k + \mu(6i + 8j + 10k)$, Where λ and μ are scalars	Find the shortest distance between the parallel lines with equations: $r = i + 2j - k + \lambda(5i + 4j + 3k)$ and $r = 2i + k + \mu(5i + 4j + 3k)$, Where λ and μ are scalars
	$\frac{21\sqrt{2}}{10}$

Worked example

Your turn

The lines l_1 and l_2 have equations

$$r = \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\0 \end{pmatrix} \text{ and } r = \begin{pmatrix} 1\\3\\-1 \end{pmatrix} + \mu \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

respectively, where λ and μ are scalars. Find the shortest distance between these two lines. The lines l_1 and l_2 have equations

$$r = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\1 \end{pmatrix} \text{ and } r = \begin{pmatrix} -1\\3\\-1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$$

respectively, where λ and μ are scalars. Find the shortest distance between these two lines. $2\sqrt{2}$

Worked example	Your turn
 The line <i>l</i> has equation \$\frac{x-1}{-2} = \frac{y-1}{2} = \frac{z+3}{1}\$, and the point <i>A</i> has coordinates (-1,2,1). (a) Find the shortest distance between <i>A</i> and <i>l</i>. (b) Find the Cartesian equation of the line that is perpendicular to <i>l</i> and passes through <i>A</i>. 	 The line <i>l</i> has equation \$\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+3}{-1}\$, and the point <i>A</i> has coordinates (1,2, -1). (a) Find the shortest distance between <i>A</i> and <i>l</i>. (b) Find the Cartesian equation of the line that is perpendicular to <i>l</i> and passes through <i>A</i>.

(a)
$$\frac{\sqrt{29}}{3}$$

(b) $\frac{x-1}{8} = \frac{y-2}{1} = \frac{z+1}{14}$

Worked example	Your turn
Find the perpendicular distance from the point with coordinates $(1, -2, 3)$ to the plane with equation $3x - 2y - z = 5$.	Find the perpendicular distance from the point with coordinates $(3,2,-1)$ to the plane with equation $2x - 3y + z = 5$.
	$\frac{6}{\sqrt{14}}$

Worked example	Your turn
The plane Π has vector equation $\mathbf{r} \cdot (2\mathbf{i} - 3\mathbf{j} - \mathbf{k}) = 5$ Find the perpendicular distance from the point (2, -12, -23) to the plane	The plane Π has vector equation $r \cdot (3i - 4j + 2k) = 5$ Find the perpendicular distance from the point (6, 2, 12) to the plane $\sqrt{29}$

Worked example	Your turn
Worked example The plane Π has equation $r \cdot (2i + 2j + 1k) = 5$. The point <i>P</i> has coordinates (-2,3,1). (a) Find the shortest distance between <i>P</i> and Π .	Your turnThe plane II has equation $r \cdot (i + 2j + 2k) = 5$. The point P has coordinates $(1,3, -2)$. (a) Find the shortest distance between P and II. $\frac{2}{3}$

Worked example	Your turn
The plane Π has equation $r \cdot (2i + 2j + 1k) = 5$.	The plane Π has equation $r \cdot (i + 2j + 2k) = 5$.
The point P has coordinates $(-2,3,1)$.	The point P has coordinates $(1,3, -2)$.
The point Q is the reflection of the point P in Π .	The point Q is the reflection of the point P in Π .
Find the coordinates of point Q .	Find the coordinates of point Q .

$$\left(\frac{12}{9},\frac{35}{9},-\frac{10}{9}\right)$$

Worked example	Your turn
The line l_1 has equation $\frac{x-2}{-2} = \frac{y-4}{2} = \frac{z+6}{-1}$. The plane Π has equation $x - 3y + 2z = 8$. The line l_2 is the reflection of line l_1 in the plane Π . Find a vector equation of the line l_2 .	The line l_1 has equation $\frac{x-2}{2} = \frac{y-4}{-2} = \frac{z+6}{1}$. The plane Π has equation $2x - 3y + z = 8$. The line l_2 is the reflection of line l_1 in the plane Π . Find a vector equation of the line l_2 . $\begin{pmatrix} 6\\0\\-4 \end{pmatrix} + t \begin{pmatrix} 8\\-19\\4 \end{pmatrix}$