## 9) Vectors

9.1) Equation of a line in three dimensions
9.2) Equation of a plane in three dimensions
9.3) Scalar product
9.4) Calculating angles between lines and planes
9.5) Points of intersection
9.6) Finding perpendiculars

## Your turn

The straight line has vector equation $r=$ $(i+5 j-3 k)+t(2 i-j-6 k)$. Given that the point $(0, a, b)$ lines on $l$, find the value of $a$ and the value of $b$.

The straight line has vector equation $r=$ $(3 i+2 j-5 k)+t(i-6 j-2 k)$. Given that the point $(a, b, 0)$ lines on $l$, find the value of $a$ and the value of $b$.

$$
a=\frac{1}{2}, b=17
$$

## Your turn

The straight line $l$ has vector equation $\boldsymbol{r}=(1 i+4 j-3 k)+\lambda(10 i-15 j+5 k)$. Show that another vector equation of $l$ is

$$
\boldsymbol{r}=(7 i-5 j)+\mu(2 i-3 j+k)
$$

The straight line $l$ has vector equation

$$
\boldsymbol{r}=(2 i+5 j-3 k)+\lambda(6 i-2 j+4 k)
$$

$$
\text { Show that another vector equation of } l \text { is }
$$

$$
\boldsymbol{r}=(8 i+3 j+k)+\mu(3 i-j+2 k)
$$

$$
\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right)=2\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

$\therefore$ lines parallel

$$
\begin{aligned}
& \text { Let } \lambda=0->\mathrm{r}=\left(\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right) \\
& \text { Let } \mu=-2->r=\left(\begin{array}{c}
8+3(-2) \\
3-(-2) \\
1+2(-2)
\end{array}\right)=\left(\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right)
\end{aligned}
$$

$\therefore$ point in common
Lines parallel and shared point $\therefore$ same line

## Your turn

The line $l$ has equation $r=\left(\begin{array}{c}4 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right)$, and the point $P$ has position vector $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
(a) Show that $P$ does not lie on $l$.

Given that a circle, centre $P$, intersects $l$ at points $A$ and $B$, and that $A$ has position vector $\left(\begin{array}{c}-6 \\ 3 \\ 0\end{array}\right)$,
(b) find the possible position vectors of $B$.

The line $l$ has equation $r=\left(\begin{array}{c}-2 \\ 1 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$, and the point $P$ has position vector $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$.
(a) Show that $P$ does not lie on $l$.

Given that a circle, centre $P$, intersects $l$ at points $A$ and $B$, and that $A$ has position vector $\left(\begin{array}{c}0 \\ -3 \\ 6\end{array}\right)$,
(b) find the possible position vectors of $B$.
(a) Shown
(b) $(-3,3,3)$ or $(0,-3,6)$

Find the Cartesian equation of the line with vector equation $r=\left(\begin{array}{c}-4 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right)$.
equation $r=\left(\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)$.
Find the Cartesian equation of the line with vector

Find the Cartesian equation of the line with vector

$$
\text { equation } \begin{aligned}
\boldsymbol{r} & =\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right) \\
& \frac{x-4}{-1}=\frac{y-3}{2}=\frac{z+2}{5}
\end{aligned}
$$

Find the Cartesian equation of the line with vector equation $r=\left(\begin{array}{l}2 \\ 5 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$.

$$
\frac{x-2}{1}=\frac{y-5}{3}=\frac{z}{-2}
$$

## Your turn

The Cartesian equation of a line is $\frac{x+2}{-3}=\frac{y}{-4}=\frac{z-5}{1}$. Find the vector form of the equation of the line.

The Cartesian equation of a line is $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z}{4}$. Find the vector form of the equation of the line.

$$
r=\left(\begin{array}{c}
2 \\
-5 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right)
$$

The Cartesian equation of a line is $\frac{2-x}{3}=\frac{y+3}{-1}=\frac{5-z}{-4}$. Find the vector form of the equation of the line.

## Your turn

Show that the points $A(3,-4,-5), B(-3,1,-2) \quad$ Show that the points $A(-3,4,5), B(3,-1,2)$ and and $C(-9,6,1)$ are collinear

Shown

## Your turn

The Cartesian equation of a line is $y=2 x-3$. Find the vector form of the equation of the line.

The Cartesian equation of a line is $y=3 x+2$. Find the vector form of the equation of the line.

$$
\binom{0}{2}+\lambda\binom{1}{3}
$$

The Cartesian equation of a line is $y=3 x-2$. Find the vector form of the equation of the line.
9.2) Equation of a plane in three dimensions Chapter CONTENTS

A plane $\Pi$ passes through the points $A(1,-2,2), B(-3,-2,1), C(5,4,3)$
Find the equation of the plane $\Pi$ in the form $\mathrm{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$

A plane $\Pi$ passes through the points

$$
A(2,2-1), B(3,2,-1), C(4,3,5)
$$

Find the equation of the plane $\Pi$ in the form

$$
\begin{aligned}
& \mathrm{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c} \\
& r=2 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}+\lambda \boldsymbol{i}+\mu(2 \boldsymbol{i}+\boldsymbol{j}+6 \boldsymbol{k}) \\
& \quad r=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)
\end{aligned}
$$

## Your turn

Verify that the point $P$ with position vector $\left(\begin{array}{c}2 \\ -3 \\ 2\end{array}\right)$ lies in the plane with vector equation

$$
r=\left(\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Verify that the point $P$ with position vector $\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$
lies in the plane with vector equation

$$
\begin{gathered}
r=\left(\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \\
\text { Shown }
\end{gathered}
$$

## Your turn

The plane $\Pi$ is perpendicular to the normal $\boldsymbol{n}=2 \boldsymbol{i}-\boldsymbol{j}+3 \boldsymbol{k}$ and passes through the point $P$ with position vector $4 \boldsymbol{i}-\mathbf{8 j}+7 \boldsymbol{k}$. Find the Cartesian equation of $\Pi$.

The plane $\Pi$ is perpendicular to the normal $\boldsymbol{n}=3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$ and passes through the point $P$ with position vector $8 \boldsymbol{i}+4 \boldsymbol{j}-7 \boldsymbol{k}$.
Find the Cartesian equation of $\Pi$.

$$
3 x-2 y+z=9
$$

Show that the points $(3,2,2),(3,5,1),(-1,3,4)$ and $(-1,6,3)$ are coplanar.

Show that the points $(2,2,3),(1,5,3),(4,3,-1)$ and $(3,6,-1)$ are coplanar.

Shown

Show that the points $(3,2,2),(3,5,1),(-1,3,4)$ and $(-1,6,4)$ are not coplanar.

Show that the points $(2,2,3),(1,5,3),(4,3,-1)$ and $(4,6,-1)$ are coplanar.

Shown

Worked example

## Your turn

$$
\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right) \quad\left(\begin{array}{c}
5 \\
-2 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
3 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
a \\
5 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
b \\
10
\end{array}\right)
$$

Find the acute angle between the vectors

$$
\boldsymbol{a}=\left(\begin{array}{l}
5 \\
3 \\
1
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
5 \\
0 \\
1
\end{array}\right)
$$

Find the angle between the vectors
$2 \boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}$ and $\boldsymbol{j}+8 \boldsymbol{k}$

$$
\left(\begin{array}{c}
2 \\
4 \\
-1
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
1 \\
8
\end{array}\right)
$$

Find the acute angle between the vectors

$$
\begin{gathered}
\boldsymbol{a}=\left(\begin{array}{l}
5 \\
3 \\
1
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right) . \\
\\
70.64^{\circ}(2 \mathrm{dp})
\end{gathered}
$$

Find the angle between the vectors

$$
-\boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k} \text { and } 7 \boldsymbol{i}-2 \boldsymbol{j}+2 \boldsymbol{k}
$$

$$
96.9^{\circ}(3 \mathrm{sf})
$$

## Your turn

If $A(5,3,2), \quad B(4,0,5)$ and $C(2,-3,4)$, find the area of triangle $A B C$

If $A(2,3,5), \quad B(5,0,4)$ and $C(4,-3,2)$, find the area of triangle $A B C$

$$
7.10 \text { (3 sf) }
$$

## Your turn

Show that $\boldsymbol{a}=\left(\begin{array}{c}3 \\ 1 \\ 2\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}-1 \\ 7 \\ -2\end{array}\right)$ are $\quad$ Show that $\boldsymbol{a}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$ are perpendicular.

Shown

## Your turn

Given that the vectors $a=1 \boldsymbol{i}-6 \boldsymbol{j}+2 \boldsymbol{k}$ and $b=\lambda \boldsymbol{i}-2 \boldsymbol{j}+5 \boldsymbol{k}$ are perpendicular, find the value of $\lambda$

Given that the vectors $a=2 \boldsymbol{i}-6 \boldsymbol{j}+\boldsymbol{k}$ and $b=5 \boldsymbol{i}+2 \boldsymbol{j}+\lambda \boldsymbol{k}$ are perpendicular, find the value of $\lambda$

$$
\lambda=2
$$

## Your turn

Show that the two lines are perpendicular: $\mathrm{I}_{1}: r=(-9 \boldsymbol{i}+10 \boldsymbol{k})+\lambda(3 \boldsymbol{i}+\mathbf{2 j}-\boldsymbol{k})$ $\mathrm{I}_{2}: r=(-3 \boldsymbol{i}+5 \boldsymbol{k})+\mu(2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k})$

Show that the two lines are perpendicular:
$\mathrm{I}_{1}: r=(-9 \boldsymbol{i}+10 \boldsymbol{k})+\lambda(2 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k})$
$\mathrm{I}_{2}: r=(-3 \boldsymbol{i}+5 \boldsymbol{k})+\mu(3 \boldsymbol{i}-\boldsymbol{j}+5 \boldsymbol{k})$
Shown

Given that
$\boldsymbol{a}=2 \boldsymbol{i}-5 \boldsymbol{j}+4 \boldsymbol{k}$ and $\boldsymbol{b}=-4+8 \boldsymbol{j}-5 \boldsymbol{k}$, find a vector which is perpendicular to both $\boldsymbol{a}$ and $\boldsymbol{b}$.

Given that
$\boldsymbol{a}=-2 \boldsymbol{i}+5 \boldsymbol{j}-4 \boldsymbol{k}$ and $\boldsymbol{b}=4 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k}$, find a vector which is perpendicular to both $\boldsymbol{a}$ and $\boldsymbol{b}$.

$$
7 \boldsymbol{i}+6 \boldsymbol{j}+4 \boldsymbol{k}
$$

Find, to the nearest tenth of a degree, the angle that the vector $9 \boldsymbol{i}-5 \boldsymbol{j}+3 \boldsymbol{k}$ makes with:

- The positive $x$-axis

Find, to the nearest tenth of a degree, the angle that the vector $\boldsymbol{i}+11 \boldsymbol{j}-4 \boldsymbol{k}$ makes with:

- The positive $z$-axis
$109.9^{\circ}$ (1 dp)

The points $P, Q$ and $R$ have coordinates
( $6,-1,1$ ), $(4,5,-2)$ and $(-5,3,0)$ respectively.
(a) Show that $P Q$ is perpendicular to $Q R$
(b) Hence find the centre and radius of the circle that passes through points $P, Q$ and $R$

The points $P, Q$ and $R$ have coordinates $(1,-1,6),(-2,5,4)$ and $(0,3,-5)$ respectively.
(a) Show that $P Q$ is perpendicular to $Q R$
(b) Hence find the centre and radius of the circle that passes through points $P, Q$ and $R$
(a) Shown
(b) Centre $\left(\frac{1}{2}, 1, \frac{1}{2}\right)$, radius $\frac{\sqrt{138}}{2}$

## 9.4) Calculating angles between lines and planes

## Worked example

## Your turn

Find the acute angle between the line $l$ with equation $\boldsymbol{r}=-5 \boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}+\lambda(-12 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$
and the plane with equation $\boldsymbol{r} \cdot(-\boldsymbol{i}-\mathbf{2} \boldsymbol{j}+2 \boldsymbol{k})=2$.

Find the acute angle between the line $l$ with equation
$\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}-12 \boldsymbol{k})$
and the plane with equation $\boldsymbol{r} \cdot(2 \boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k})=2$.

$$
14.9^{\circ} \text { (3 sf) }
$$

## Worked example

The plane $P$ has equation

$$
r=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)
$$

a) Find a vector perpendicular to the plane $P$
b) The line $l$ passes through the point $A(3,3,1)$ and meets $P$ at $(2,1,3)$. The acute angle between the plane $P$ and the line $l$ is $\theta$. Find $\theta$ to the nearest degree

The plane $P$ has equation

$$
r=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

a) Find a vector perpendicular to the plane $P$
b) The line $l$ passes through the point $A(1,3,3)$ and meets $P$ at $(3,1,2)$. The acute angle between the plane $P$ and the line $l$ is $\theta$. Find $\theta$ to the nearest degree

$$
\theta=63^{\circ}(\text { nearest degree })
$$

Find the acute angle between the planes:
$\Pi_{1}: \boldsymbol{r} \cdot(3 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})=4$
$\Pi_{2}: \boldsymbol{r} \cdot(2 \boldsymbol{i}+3 \boldsymbol{j})=7$

Find the acute angle between the planes:

$$
\begin{gathered}
\Pi_{1}: \boldsymbol{r} \cdot(4 \boldsymbol{i}+4 \boldsymbol{j}-7 \boldsymbol{k})=13 \\
\Pi_{2}: \boldsymbol{r} \cdot(7 \boldsymbol{i}-4 \boldsymbol{j}+4 \boldsymbol{k})=6 \\
\theta=78.6^{\circ}(1 \mathrm{dp})
\end{gathered}
$$

The lines $l_{1}$ and $l_{2}$ have Cartesian equations $\frac{x+6}{-1}=\frac{y-3}{2}=\frac{z-2}{3}$ and $\frac{x+8}{-2}=\frac{y-4}{3}=\frac{z+13}{-1}$ respectively. (a) Show that the point $A(-2,-5,-10)$ lies on both lines
(b) Find the size of the acute angle between the lines at $A$

The lines $l_{1}$ and $l_{2}$ have Cartesian equations $\frac{x-6}{-1}=\frac{y+3}{2}=\frac{z+2}{3}$ and $\frac{x+5}{2}=\frac{y-15}{-3}=\frac{z-3}{1}$ respectively.
(a) Show that the point $A(3,3,7)$ lies on both lines
(b) Find the size of the acute angle between the lines at $A$
(a) Shown
(b) $69.1^{\circ}(1 \mathrm{dp})$

## 9.5) Points of intersection

## Your turn

The lines $l_{1}$ and $l_{2}$ have vector equations $r=i+2 j+3 k+\lambda(4 i-3 j-2 k)$ and $r=-3 i-2 k+\mu(-4 i+8 j+9 k)$ respectively. Show that the two lines intersect, and find the position vector of the point of intersection.

The lines $l_{1}$ and $l_{2}$ have vector equations
$r=3 i+j+k+\lambda(i-2 j-k)$ and
$r=-2 j+3 k+\mu(-5 i+j+4 k)$ respectively. Show that the two lines intersect, and find the position vector of the point of intersection.

$$
(5,-3,-1)
$$

Find the point of intersection of the line $l$ and the plane $\Pi$ where:
$l: r=-2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}+\lambda(2 \boldsymbol{i}-\boldsymbol{j}+7 \boldsymbol{k})$
П: $\boldsymbol{r} \cdot(3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k})=5$

Find the point of intersection of the line $l$ and the plane $\Pi$ where:
$l: \boldsymbol{r}=-\boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}+\lambda(\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k})$
П: $\boldsymbol{r} \cdot(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})=4$

$$
(1,3,-1)
$$

## Your turn

A line has Cartesian equation

$$
\frac{x-3}{-5}=\frac{y+2}{-3}=\frac{4-z}{-1}
$$

A plane $\Pi$ has Cartesian equation

$$
-4 x-3 y+2 z=10
$$

Find the position vector of the point of intersection of the line and the plane.

A line has Cartesian equation

$$
\frac{x-3}{5}=\frac{y+2}{3}=\frac{4-z}{1}
$$

A plane $\Pi$ has Cartesian equation

$$
4 x+3 y-2 z=-10
$$

Find the position vector of the point of intersection of the line and the plane.

$$
\left(\frac{53}{31},-\frac{86}{31}, \frac{132}{32}\right)
$$

## Your turn

The lines $l_{1}$ and $l_{2}$ have equations
$\frac{x-3}{2}=y-4=\frac{z-1}{-5}$ and $\frac{x-1}{3}=\frac{y+2}{-7}=z-5$
respectively. Prove that $l_{1}$ and $l_{2}$ are skew.

The lines $l_{1}$ and $l_{2}$ have equations
$\frac{x-2}{4}=\frac{y+3}{2}=z-1$ and $\frac{x+1}{5}=\frac{y}{4}=\frac{z-4}{-2}$
respectively. Prove that $l_{1}$ and $l_{2}$ are skew.

## Your turn

Find the shortest distance between the parallel lines with equations:
$\boldsymbol{r}=2 \boldsymbol{i}-\boldsymbol{j}+6 \boldsymbol{k}+\lambda(3 \boldsymbol{i}+4 \boldsymbol{j}+5 \boldsymbol{k})$ and
$\boldsymbol{r}=3 \boldsymbol{j}-\boldsymbol{k}+\mu(6 \boldsymbol{i}+8 \boldsymbol{j}+10 \boldsymbol{k})$, Where $\lambda$ and $\mu$ are scalars

Find the shortest distance between the parallel lines with equations:
$\boldsymbol{r}=\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}+\lambda(5 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$ and
$\boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{k}+\mu(5 \boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k})$,
Where $\lambda$ and $\mu$ are scalars

$$
\frac{21 \sqrt{2}}{10}
$$

## Your turn

The lines $l_{1}$ and $l_{2}$ have equations $r=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $r=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$ respectively, where $\lambda$ and $\mu$ are scalars. Find the shortest distance between these two lines.

The lines $l_{1}$ and $l_{2}$ have equations
$r=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ and $r=\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
respectively, where $\lambda$ and $\mu$ are scalars.
Find the shortest distance between these two lines.

$$
2 \sqrt{2}
$$

The line $l$ has equation $\frac{x-1}{-2}=\frac{y-1}{2}=\frac{z+3}{1}$, and the point $A$ has coordinates $(-1,2,1)$.
(a) Find the shortest distance between $A$ and $l$.
(b) Find the Cartesian equation of the line that is perpendicular to $l$ and passes through $A$.

The line $l$ has equation $\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}$, and the point $A$ has coordinates $(1,2,-1)$.
(a) Find the shortest distance between $A$ and $l$.
(b) Find the Cartesian equation of the line that is perpendicular to $l$ and passes through $A$.
(a) $\frac{\sqrt{29}}{3}$
(b) $\frac{x-1}{8}=\frac{y-2}{1}=\frac{z+1}{14}$

## Your turn

Find the perpendicular distance from the point with coordinates $(1,-2,3)$ to the plane with equation $3 x-2 y-z=5$.

Find the perpendicular distance from the point with coordinates $(3,2,-1)$ to the plane with equation $2 x-3 y+z=5$.

$$
\frac{6}{\sqrt{14}}
$$

## Worked example

## Your turn

The plane $\Pi$ has vector equation

$$
\boldsymbol{r} \cdot(2 \boldsymbol{i}-3 \boldsymbol{j}-\boldsymbol{k})=5
$$

Find the perpendicular distance from the point $(2,-12,-23)$ to the plane

The plane $\Pi$ has vector equation

$$
\boldsymbol{r} \cdot(3 \boldsymbol{i}-4 \boldsymbol{j}+2 \boldsymbol{k})=5
$$

Find the perpendicular distance from the point $(6,2,12)$ to the plane

## Your turn

The plane $\Pi$ has equation $r \cdot(2 i+2 j+1 k)=5$. The point $P$ has coordinates $(-2,3,1)$.
(a) Find the shortest distance between $P$ and $\Pi$.

The plane $\Pi$ has equation $r \cdot(i+2 j+2 k)=5$.
The point $P$ has coordinates $(1,3,-2)$.
(a) Find the shortest distance between $P$ and $\Pi$.

## Your turn

The plane $\Pi$ has equation $r \cdot(2 i+2 j+1 k)=5$. The point $P$ has coordinates $(-2,3,1)$. The point $Q$ is the reflection of the point $P$ in $\Pi$. Find the coordinates of point $Q$.

The plane $\Pi$ has equation $r \cdot(i+2 j+2 k)=5$.
The point $P$ has coordinates $(1,3,-2)$.
The point $Q$ is the reflection of the point $P$ in $\Pi$. Find the coordinates of point $Q$.

$$
\left(\frac{12}{9}, \frac{35}{9},-\frac{10}{9}\right)
$$

## Your turn

The line $l_{1}$ has equation $\frac{x-2}{-2}=\frac{y-4}{2}=\frac{z+6}{-1}$.
The plane $\Pi$ has equation $x-3 y+2 z=8$. The line $l_{2}$ is the reflection of line $l_{1}$ in the plane $\Pi$. Find a vector equation of the line $l_{2}$.

The line $l_{1}$ has equation $\frac{x-2}{2}=\frac{y-4}{-2}=\frac{z+6}{1}$.
The plane $\Pi$ has equation $2 x-3 y+z=8$.
The line $l_{2}$ is the reflection of line $l_{1}$ in the plane $\Pi$.
Find a vector equation of the line $l_{2}$.

$$
\left(\begin{array}{c}
6 \\
0 \\
-4
\end{array}\right)+t\left(\begin{array}{c}
8 \\
-19 \\
4
\end{array}\right)
$$

