Type 4a: Recurrence Relation Proofs - 1 assumption

Given that $u_{n+1}=3u_n+4$ and that $u_1=1$, prove by induction that $u_n=3^n-2$

Type 4b: Recurrence Relation Proofs - 2 assumptions

A sequence of numbers is defined by

$$u_1 = 1$$
 $u_2 = 5$
 $u_{n+2} = 5u_{n+1} - 6u_n$ $n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n - 2^n$$

(6)

- **1** Given that $u_{n+1} = 5u_n + 4$, $u_1 = 4$, prove by induction that $u_n = 5^n 1$.
- **2** Given that $u_{n+1} = 2u_n + 5$, $u_1 = 3$, prove by induction that $u_n = 2^{n+2} 5$.
- **3** Given that $u_{n+1} = 5u_n 8$, $u_1 = 3$, prove by induction that $u_n = 5^{n-1} + 2$.
- Given that $u_{n+1} = 3u_n + 1$, $u_1 = 1$, prove by induction that $u_n = \frac{3^n 1}{2}$.
- **5** Given that $u_{n+2} = 5u_{n+1} 6u_n$, $u_1 = 1$, $u_2 = 5$ prove by induction that $u_n = 3^n 2^n$.
- **6** Given that $u_{n+2} = 6u_{n+1} 9u_n$, $u_1 = -1$, $u_2 = 0$, prove by induction that $u_n = (n-2)3^{n-1}$.
- **7** Given that $u_{n+2} = 7u_{n+1} 10u_n$, $u_1 = 1$, $u_2 = 8$, prove by induction that $u_n = 2(5^{n-1}) 2^{n-1}$.
- **8** Given that $u_{n+2} = 6u_{n+1} 9u_n$, $u_1 = 3$, $u_2 = 36$, prove by induction that $u_n = (3n 2)3^n$.