## Worked example

## Your turn

A particle $P$ of mass 2 kg moves in a horizontal straight line. At time $t$ seconds, the displacement of $P$ from a fixed point, $O$, on the line is $x \mathrm{~m}$ and the velocity of $P$ is $v \mathrm{~ms}^{-1}$.
A force of magnitude $64 x \mathrm{~N}$ acts on $P$ in the direction $P O$. The particle is also subject to a resistance of magnitude $16 v$ N.

When $t=0, x=3$ and $P$ is moving in the direction of increasing $x$ with speed $1 \mathrm{~ms}^{-1}$,
(a) Show that $\frac{d^{2} x}{d t^{2}}+16 \frac{d x}{d t}+64 x=0$
(b) Find the value of $x$ when $t=1$.

A particle $P$ of mass 2 kg moves in a horizontal straight line. At time $t$ seconds, the displacement of $P$ from a fixed point, $O$, on the line is $x \mathrm{~m}$ and the velocity of $P$ is $v \mathrm{~ms}^{-1}$.
A force of magnitude $8 x \mathrm{~N}$ acts on $P$ in the direction $P O$. The particle is also subject to a resistance of magnitude $4 v$ N . When $t=0, x=1.5$ and $P$ is moving in the direction of increasing $x$ with speed $4 \mathrm{~ms}^{-1}$,
(a) Show that $\frac{d^{2} x}{d t^{2}}+8 \frac{d x}{d t}+16 x=0$
(b) Find the value of $x$ when $t=1$.
(a) Shown
(b) $x=0.211$ (3 sf)

## Worked example

## Your turn

A particle $P$ hangs freely in equilibrium attached to one end of a light elastic string. The other end of the string is attached to a fixed point $A$. The particle is now pulled down and held at rest in a container of liquid which exerts a resistance to motion on $P . P$ is then released from rest. While the string remains taut and the particle in the liquid, the motion can be modelled using the equation $\frac{d^{2} x}{d t^{2}}+4 k \frac{d x}{d t}+3 k^{2} x=0$, where $k$ is a positive real constant Find the general solution to the differential equation and state the type of damping that the particle is subject to.

A particle $P$ hangs freely in equilibrium attached to one end of a light elastic string. The other end of the string is attached to a fixed point $A$. The particle is now pulled down and held at rest in a container of liquid which exerts a resistance to motion on $P . P$ is then released from rest. While the string remains taut and the particle in the liquid, the motion can be modelled using the equation $\frac{d^{2} x}{d t^{2}}+6 k \frac{d x}{d t}+5 k^{2} x=0$, where $k$ is a positive real constant Find the general solution to the differential equation and state the type of damping that the particle is subject to.

$$
\begin{gathered}
x=A e^{-5 k t}+B e^{-k t} \\
\text { Heavy damping }
\end{gathered}
$$

## Worked example

## Your turn

One end of a light elastic spring is attached to a fixed point $A$. A particle $P$ is attached to the other end and hangs in equilibrium vertically below $A$. At time $t=0, P$ is projected vertically downwards with speed $u$. A resistance proportional to the speed of $P$ acts on $P$. The equation of motion of $P$ is given as

$$
\frac{d^{2} x}{d t^{2}}+8 k \frac{d x}{d t}+16 k^{2} x=0
$$

where $k$ is a positive real constant and $x$ is the displacement of $P$ from its equilibrium position.
(a) Find the general solution to the differential equation.
(b) Find the time at which $P$ comes to instantaneous rest.
(c) State the type of damping that the particle is subject to

One end of a light elastic spring is attached to a fixed point $A$. A particle $P$ is attached to the other end and hangs in equilibrium vertically below $A$. At time $t=0, P$ is projected vertically downwards with speed $u$. A resistance proportional to the speed of $P$ acts on $P$. The equation of motion of $P$ is given as

$$
\frac{d^{2} x}{d t^{2}}+4 k \frac{d x}{d t}+4 k^{2} x=0
$$

where $k$ is a positive real constant and $x$ is the displacement of $P$ from its equilibrium position.
(a) Find the general solution to the differential equation.
(b) Find the time at which $P$ comes to instantaneous rest.
(c) State the type of damping that the particle is subject to
(a) $x=u t e^{-2 k t}$
(b) After $\frac{1}{2 k}$ seconds
(c) Critical damping

## Worked example

## Your turn

One end of a light elastic spring is attached to a fixed point $A$. A particle $P$ is attached to the other end and hangs in equilibrium vertically below $A$. The particle is pulled vertically down from its equilibrium position and released from rest. A resistance proportional to the speed of $P$ acts on $P$. The equation of motion of $P$ is given as

$$
\frac{d^{2} x}{d t^{2}}+4 k \frac{d x}{d t}+8 k^{2} x=0
$$

where $k$ is a positive real constant and $x$ is the displacement of $P$ from its equilibrium position.
(a) Find the general solution to the differential equation.
(b) Write down the period of oscillation in terms of $k$.
(c) State the type of damping that the particle is subject to

One end of a light elastic spring is attached to a fixed point $A$. A particle $P$ is attached to the other end and hangs in equilibrium vertically below $A$. The particle is pulled vertically down from its equilibrium position and released from rest. A resistance proportional to the speed of $P$ acts on $P$. The equation of motion of $P$ is given as

$$
\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+2 k^{2} x=0
$$

where $k$ is a positive real constant and $x$ is the displacement of $P$ from its equilibrium position.
(a) Find the general solution to the differential equation.
(b) Write down the period of oscillation in terms of $k$.
(c) State the type of damping that the particle is subject to
(a) $x=e^{-k t}(A \cos k t+B \sin k t)$
(b) $\frac{2 \pi}{k}$
(c) Light damping

## Worked example

## Your turn

A particle $P$ of mass 1.5 kg is moving on the $x$-axis. At time $t$ the displacement of $P$ from the origin $O$ is $x$ metres and the speed of $P$ is $v \mathrm{~ms}^{-1}$.
Three forces act on $P$, namely a restoring force of magnitude $7.5 x \mathrm{~N}$, a resistance to the motion of $P$ of magnitude $3 v \mathrm{~N}$ and a force of magnitude $6 \sin t \mathrm{~N}$ acting in the direction $O P$.
When $t=0, x=5$ and $\frac{d x}{d t}=2$.
(a) Show that $\frac{d x^{2}}{d t^{2}}+2 \frac{d x}{d t}+5 x=4 \sin t$
(b) Find $x$ as a function of $t$.
(c) Describe the motion when $t$ is large.

A particle $P$ of mass 1.5 kg is moving on the $x$-axis. At time $t$ the displacement of $P$ from the origin $O$ is $x$ metres and the speed of $P$ is $v \mathrm{~ms}^{-1}$.
Three forces act on $P$, namely a restoring force of magnitude $7.5 x \mathrm{~N}$, a resistance to the motion of $P$ of magnitude $6 v \mathrm{~N}$ and a force of magnitude $12 \sin t \mathrm{~N}$ acting in the direction $O P$.
When $t=0, x=5$ and $\frac{d x}{d t}=2$.
(a) Show that $\frac{d x^{2}}{d t^{2}}+4 \frac{d x}{d t}+5 x=8 \sin t$
(b) Find $x$ as a function of $t$.
(c) Describe the motion when $t$ is large.
(a) Shown
(b) $x=e^{-2 t}(6 \cos t+13 \sin t)+\sin t-\cos t$
(c) Simple harmonic motion with amplitude $\sqrt{2}$ and period $2 \pi$

## Worked example

## Your turn

A particle $P$ is attached to end $A$ of a light elastic spring $A B$. Initially the particle and the string lie at rest on a smooth horizontal plane. At time $t=0$, the end $B$ of the string is set in motion and moves with constant speed $U$ in the direction $A B$, and the displacement of $P$ from $A$ is $x$. Air resistance acting on $P$ is proportional to its speed. The subsequent motion can be modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 k \frac{d x}{d t}+4 k^{2} x=2 k U
$$

Find an expression for $x$ in terms of $U, k$ and $t$

A particle $P$ is attached to end $A$ of a light elastic spring $A B$. Initially the particle and the string lie at rest on a smooth horizontal plane. At time $t=0$, the end $B$ of the string is set in motion and moves with constant speed $U$ in the direction $A B$, and the displacement of $P$ from $A$ is $x$.
Air resistance acting on $P$ is proportional to its speed. The subsequent motion can be modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+k^{2} x=2 k U
$$

Find an expression for $x$ in terms of $U, k$ and $t$

$$
x=\left(-\frac{2 U}{k}-U t\right) e^{-k t}+\frac{2 U}{k}
$$

