8.3) Damped and forced harmonic motion

Worked example	Your turn
At time <i>t</i> , the displacement of <i>P</i> from a fixed point on the line is <i>x</i> . The motion of the particle is modelled by the differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 5x = 0$ When $t = 0, P$ is at rest at the point where $x = 3$ (a) Find <i>x</i> as a function of <i>t</i> (b) Calculate the value of <i>x</i> when $t = \frac{2\pi}{3}$ (b) Calculate the value of <i>x</i> when $t = \frac{2\pi}{3}$ (c) State whether the motion is heavily, critically or lightly damped	motion of the particle is modelled by the differential

Worked example	Your turn
At time <i>t</i> , the displacement of <i>P</i> from a fixed point on the line is <i>x</i> . The motion of the particle is modelled by the differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 0$ When $t = 0, P$ is at rest at the point where $x = 3$ (a) Find <i>x</i> as a function of <i>t</i> (b) Calculate the value of <i>x</i> when $t = \frac{2\pi}{3}$ (c) State whether the motion is heavily, critically or lightly damped	A particle <i>P</i> is moving in a straight line. At time <i>t</i> , the displacement of <i>P</i> from a fixed point on the line is <i>x</i> . The motion of the particle is modelled by the differential equation $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0$ When $t = 0$, <i>P</i> is at rest at the point where $x = 2$ (a) Find <i>x</i> as a function of <i>t</i> (b) Calculate the value of <i>x</i> when $t = \frac{\pi}{3}$ (c) State whether the motion is heavily, critically or lightly damped (a) $x = (2 + 4t)e^{-2t}$ (b) 0.762 (3 sf) (c) Critically damped

Worked example	Your turn
At time <i>t</i> , the displacement of <i>P</i> from a fixed point on the line is <i>x</i> . The motion of the particle is modelled by the differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 18x = 0$ When $t = 0, P$ is at rest at the point where $x = 3$ (a) Find <i>x</i> as a function of <i>t</i> (b) Calculate the value of <i>x</i> when $t = \frac{2\pi}{3}$ (c) State whether the motion is heavily, critically or lightly damped (a) <i>x</i>	motion of the particle is modelled by the differential