8.3) Damped and forced harmonic motion

Worked example

Your turn

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+5 x=0
$$

When $t=0, P$ is at rest at the point where $x=3$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{2 \pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x=0
$$

When $t=0, P$ is at rest at the point where $x=2$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{\pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped
(a) $x=3 e^{-t}-e^{-3 t}$
(b) 1.01 (3 sf)
(c) Heavily damped

Worked example

Your turn

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+9 x=0
$$

When $t=0, P$ is at rest at the point where $x=3$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{2 \pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+4 x=0
$$

When $t=0, P$ is at rest at the point where $x=2$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{\pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped
(a) $x=(2+4 t) e^{-2 t}$
(b) 0.762 (3 sf)
(c) Critically damped

Worked example

Your turn

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+18 x=0
$$

When $t=0, P$ is at rest at the point where $x=3$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{2 \pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped

A particle P is moving in a straight line.
At time t, the displacement of P from a fixed point on the line is x.
The motion of the particle is modelled by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+8 x=0
$$

When $t=0, P$ is at rest at the point where $x=2$
(a) Find x as a function of t
(b)Calculate the value of x when $t=\frac{\pi}{3}$
(c) State whether the motion is heavily, critically or lightly damped
(a) $x=2 e^{-2 t}(\cos 2 t+\sin 2 t)$
(b) 0.0901 (3 sf)
(c) Lightly damped

