Type 3: Matrix Proofs

Example

Prove by induction that $\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)^{n}=\left(\begin{array}{cc}1 & 1-2^{n} \\ 0 & 2^{n}\end{array}\right)$ for all $n \in \mathbb{Z}^{+}$.

Example

Prove by induction that $\left(\begin{array}{ll}-2 & 9 \\ -1 & 4\end{array}\right)^{n}=\left(\begin{array}{cc}-3 n+1 & 9 n \\ -n & 3 n+1\end{array}\right)$ for all $n \in \mathbb{Z}^{+}$.

Be the examiner!

How many marks does this deserve??
6. Prove by induction that for all positive integers n

$$
\mathrm{f}(n)=3^{2 n+4}-2^{2 n}
$$

is divisible by 5

Let

$$
f(1)^{x}=3^{2(1)+4}-2^{(1)}=3^{6}-2^{2}=729-4=725=145 \times 5
$$

$\therefore f(n)$ divisite by 5 when $x=1$
Assume true for $u=k$:

$$
5 \mid f(k) \Rightarrow f(k)=3^{2 k+4 m}-2^{2 k}=5 a \quad \text { where } \quad a \in \mathbb{N}
$$

Consider $f(k+1)$: k

$$
\begin{aligned}
& f(k+1)=3^{2(k+1)+4}-2^{2(k+1)}=3^{2 k+6}-2^{2 k+2}=9\left(3^{2 k+4}\right)-4\left(2^{2 k}\right) \\
& \Rightarrow f(k+1)=9\left(3^{2 k+4}-2^{2 k}\right)+5\left(2^{2 k}\right)=9 f(k)+5\left(2^{2 k}\right)=5\left(a_{a}+2^{2 k}\right) \\
& \therefore f(k) \text { divisible by } 5 \text { f(h+1) divisible by } 5
\end{aligned}
$$

Since true for $n=1 \Rightarrow$ true for $\forall n \in \mathbb{Z}^{+}$by matheratioal induction.

