8.3) Proving statements involving matrices

Prove by induction that for all positive integers n :

$$
\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{n}=\left(\begin{array}{cc}
8 n+1 & 16 n \\
-4 n & 1-8 n
\end{array}\right)
$$

Prove by induction that for all positive integers n :

$$
\begin{aligned}
\left(\begin{array}{ll}
-2 & 9 \\
-1 & 4
\end{array}\right)^{n}= & \left(\begin{array}{cc}
-3 n+1 & 9 n \\
-n & 3 n+1
\end{array}\right) \\
& \text { Proof }
\end{aligned}
$$

Your turn

Prove by induction that for all positive integers n :

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
2^{n}-1 & 1
\end{array}\right)
$$

Prove by induction that for all positive integers n :

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)^{n}=\left(\begin{array}{cc}
1 & 1-2^{n} \\
0 & 2^{n}
\end{array}\right) \\
\text { Proof }
\end{gathered}
$$

