Your turn

A particle is moving along a straight line. At time t seconds its displacement, $x \mathrm{~m}$ from a fixed point O is such that $\frac{d^{2} x}{d t^{2}}=-9 x$.
Given that at $t=0, x=2$ and the particle is moving with velocity $9 \mathrm{~ms}^{-1}$,
(a) find an expression for the displacement of the particle after t seconds
(b) hence determine the maximum displacement of the particle from O.

A particle is moving along a straight line.
At time t seconds its displacement, $x \mathrm{~m}$ from a fixed point O is such that $\frac{d^{2} x}{d t^{2}}=-4 x$.
Given that at $t=0, x=1$ and the particle is moving with velocity $4 \mathrm{~ms}^{-1}$,
(a) find an expression for the displacement of the particle after t seconds
(b) hence determine the maximum displacement of the particle from O.
(a) $x=\cos 2 t+2 \sin 2 t$
(b) $\sqrt{5}$

Worked example

Your turn

A particle P, is attached to the ends of two identical elastic springs. The free ends of the springs are attached to two points A and B. The point C lies between A and B such that $A B C$ is a straight line and $A C \neq B C$. The particle is held at C and then released from rest.
At time t seconds, the displacement of the particle from C is $x \mathrm{~m}$ and its velocity is $v \mathrm{~ms}^{-1}$.
The subsequent motion of the particle can be described by the differential equation $\ddot{x}=-16 x$.
(a) Describe the motion of the particle.

Given that $x=0.5$ and $v=0$ when $t=0$,
(b) solve the differential equation to find x as a function of t
(c) state the period of the motion and calculate the maximum speed of P.

A particle P, is attached to the ends of two identical elastic springs. The free ends of the springs are attached to two points A and B. The point C lies between A and B such that $A B C$ is a straight line and $A C \neq B C$. The particle is held at C and then released from rest.
At time t seconds, the displacement of the particle from C is $x \mathrm{~m}$ and its velocity is $v \mathrm{~ms}^{-1}$.
The subsequent motion of the particle can be described by the differential equation $\ddot{x}=-25 x$.
(a) Describe the motion of the particle.

Given that $x=0.4$ and $v=0$ when $t=0$,
(b) solve the differential equation to find x as a function of
t
(c) state the period of the motion and calculate the maximum speed of P.
(a) Simple harmonic motion
(b) $x=0.4 \cos 5 t$
(c) Period $\frac{2 \pi}{5}$ seconds. Max speed $2 \mathrm{~ms}^{-1}$

