8.2) Simple harmonic motion

Worked example	Your turn
A particle is moving along a straight line. At time <i>t</i> seconds its displacement, <i>x</i> m from a fixed point <i>O</i> is such that $\frac{d^2x}{dt^2} = -9x$. Given that at $t = 0, x = 2$ and the particle is moving with velocity 9 ms ⁻¹ , (a) find an expression for the displacement of the particle after <i>t</i> seconds (b) hence determine the maximum displacement of the particle from <i>O</i> .	A particle is moving along a straight line. At time <i>t</i> seconds its displacement, <i>x</i> m from a fixed point <i>O</i> is such that $\frac{d^2x}{dt^2} = -4x$. Given that at $t = 0, x = 1$ and the particle is moving with velocity 4 ms ⁻¹ , (a) find an expression for the displacement of the particle after <i>t</i> seconds (b) hence determine the maximum displacement of the particle from <i>O</i> . (a) $x = \cos 2t + 2 \sin 2t$ (b) $\sqrt{5}$

Worked example	Your turn
A particle <i>P</i> , is attached to the ends of two identical elastic springs. The free ends of the springs are attached to two points <i>A</i> and <i>B</i> . The point <i>C</i> lies between <i>A</i> and <i>B</i> such that <i>ABC</i> is a straight line and $AC \neq BC$. The particle is held at <i>C</i> and then released from rest. At time <i>t</i> seconds, the displacement of the particle from <i>C</i> is <i>x</i> m and its velocity is <i>v</i> ms ⁻¹ . The subsequent motion of the particle can be described by the differential equation $\ddot{x} = -16x$. (a) Describe the motion of the particle. Given that $x = 0.5$ and $v = 0$ when $t = 0$, (b) solve the differential equation to find <i>x</i> as a function of <i>t</i> (c) state the period of the motion and calculate the maximum speed of <i>P</i> .	A particle <i>P</i> , is attached to the ends of two identical elastic springs. The free ends of the springs are attached to two points <i>A</i> and <i>B</i> . The point <i>C</i> lies between <i>A</i> and <i>B</i> such that <i>ABC</i> is a straight line and <i>AC</i> \neq <i>BC</i> . The particle is held at <i>C</i> and then released from rest. At time <i>t</i> seconds, the displacement of the particle from <i>C</i> is <i>x</i> m and its velocity is <i>v</i> ms ⁻¹ . The subsequent motion of the particle can be described by the differential equation $\ddot{x} = -25x$. (a) Describe the motion of the particle. Given that $x = 0.4$ and $v = 0$ when $t = 0$, (b) solve the differential equation to find <i>x</i> as a function of <i>t</i> (c) state the period of the motion and calculate the maximum speed of <i>P</i> . (a) Simple harmonic motion (b) $x = 0.4 \cos 5t$ (c) Period $\frac{2\pi}{5}$ seconds. Max speed $2 ms^{-1}$