8.1) Modelling with first-order differential equations

Your turn

A particle P starts from rest at a point O and moves along a straight line.
At time t seconds the acceleration, $a \mathrm{~ms}^{-2}$, of P is given by

$$
a=\frac{8}{(t+4)^{2}}, \quad t \geq 0
$$

(a) Find the velocity of P at time t seconds.
(b) Find the displacement of P from O when $t=8$

A particle P starts from rest at a point O and moves along a straight line.
At time t seconds the acceleration, $a \mathrm{~ms}^{-2}$, of P is given by

$$
a=\frac{6}{(t+2)^{2}}, \quad t \geq 0
$$

(a) Find the velocity of P at time t seconds.
(b) Find the displacement of P from O when $t=6$
(a) $\left(3-\frac{6}{t+2}\right) m s^{-1}$
(b) $(18-2 \ln 2) m$

Worked example

Your turn

A particle P is moving along a straight line. At time t seconds, the acceleration of the particle is given by $a=t+\frac{6}{t} v, t \geq 0$
Given that $v=0$ when $t=4$, find the velocity of the particle at time t

A particle P is moving along a straight line.
At time t seconds, the acceleration of the particle is given
by $a=t+\frac{3}{t} v, t \geq 0$
Given that $v=0$ when $t=2$, find the velocity of the particle at time t

$$
v=\frac{1}{2} t^{3}-t^{2}
$$

Worked example

Your turn

A fluid reservoir initially containers 10000 litres of unpolluted fluid.
The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 200 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid.
It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=1200-\frac{2 x}{100+t}
$$

(b) Hence find the number of grams of contaminant in the tank after 7 days.
(c) Explain how the model could be refined.

A storage tank initially containers 1000 litres of pure water.
Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour.
The chemical solution contains 4 grams of copper sulphate per litre of water.
It is assumed that the copper suphate instantly disperses throughout the tank on entry.
Given that there are x grams of copper sulphate in the tank after t hours,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=160-\frac{3 x}{100+t}
$$

(b) Hence find the number of grams of copper sulphate in the tank after 6 hours.
(c) Explain how the model could be refined.
(a) Shown
(b) $882 \mathrm{~g}(3 \mathrm{sf})$
(c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.

