8.1) Modelling with first-order differential equations

Worked example	Your turn
A particle <i>P</i> starts from rest at a point <i>O</i> and moves along a straight line. At time <i>t</i> seconds the acceleration, <i>a</i> ms ⁻² , of <i>P</i> is given by $a = \frac{8}{(t+4)^2}, t \ge 0$ (a) Find the velocity of <i>P</i> at time <i>t</i> seconds. (b) Find the displacement of <i>P</i> from <i>O</i> when <i>t</i> = 8	A particle <i>P</i> starts from rest at a point <i>O</i> and moves along a straight line. At time <i>t</i> seconds the acceleration, <i>a</i> ms ⁻² , of <i>P</i> is given by $a = \frac{6}{(t+2)^2}, t \ge 0$ (a) Find the velocity of <i>P</i> at time <i>t</i> seconds. (b) Find the displacement of <i>P</i> from <i>O</i> when <i>t</i> = 6 (a) $\left(3 - \frac{6}{t+2}\right)ms^{-1}$ (b) $(18 - 2\ln 2)m$

Worked example	Your turn
A particle <i>P</i> is moving along a straight line. At time <i>t</i> seconds, the acceleration of the particle is given by $a = t + \frac{6}{t}v$, $t \ge 0$ Given that $v = 0$ when $t = 4$, find the velocity of the particle at time <i>t</i>	A particle <i>P</i> is moving along a straight line. At time <i>t</i> seconds, the acceleration of the particle is given by $a = t + \frac{3}{t}v$, $t \ge 0$ Given that $v = 0$ when $t = 2$, find the velocity of the particle at time <i>t</i>
	$v = \frac{1}{2}t^3 - t^2$

Worked example	Your turn
A fluid reservoir initially containers 10000 litres of unpolluted fluid. The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 200 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid. It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 1200 - \frac{2x}{100 + t}$ (b) Hence find the number of grams of contaminant in the tank after 7 days. (c) Explain how the model could be refined.	A storage tank initially containers 1000 litres of pure water. Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour. The chemical solution contains 4 grams of copper sulphate per litre of water. It is assumed that the copper suphate instantly disperses throughout the tank on entry. Given that there are x grams of copper sulphate in the tank after t hours, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 160 - \frac{3x}{100 + t}$ (b) Hence find the number of grams of copper sulphate in the tank after 6 hours. (c) Explain how the model could be refined. (a) Shown (b) 882 g (3 sf) (c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.