8.1) Proof by mathematical induction

Prove by induction that for all positive integers n :
$\sum_{r=1}^{n} r(3 r-1)=n^{2}(n+1)$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n}(2 r-1)=n^{2}
$$

Proof

Your turn

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

Proof

Your turn

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r 2^{r}=2\left(1+(n-1) 2^{n}\right)
$$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n}\left(\frac{1}{2}\right)^{r}=1-\frac{1}{2^{n}}
$$

Proof

