8A Introduction to Proof by Induction

1. Prove by mathematical induction that, for $n \in \mathbb{Z}^{+}$

$$
\sum_{r=1}^{n}(2 r-1)=n^{2}
$$

2. Prove, by mathematical induction, that for $n \in \mathbb{Z}^{+}$,

$$
\sum_{r=1}^{n}\left(r^{2}\right)=\frac{1}{6} n(n+1)(2 n+1)
$$

3. Prove, by mathematical induction, that for $n \in \mathbb{Z}^{+}$,

$$
\sum_{r=1}^{n}\left(r 2^{r}\right)=2\left[1+(n-1) 2^{n}\right]
$$

8B Divisibility Proof By Induction

1. Prove, by induction, that $3^{2 n}+11$ is divisible by 4 for all positive integers $n \in \mathbb{Z}^{+}$
2. Prove, by induction, that the expression ' n 3 $-7 n+9$ ' is divisible by 3 for all positive integers $n \in \mathbb{Z}^{+}$
3. Prove, by induction, that the expression ' $11^{n+1}+12^{2 n-1}$ is divisible by 133 for all positive integers $n \in \mathbb{Z}^{+}$

5C Composite Volumes of Revolution

1. Use mathematical induction to prove that:

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & 1-2^{n} \\
0 & 2^{n}
\end{array}\right] \text { for } n \in \mathbb{Z}^{+}
$$

2. Use mathematical induction to prove that:

$$
\left[\begin{array}{ll}
-2 & 9 \\
-1 & 4
\end{array}\right]^{n}=\left[\begin{array}{cc}
-3 n+1 & 9 n \\
-n & 3 n+1
\end{array}\right] \text { for } n \in \mathbb{Z}^{+}
$$

