8) Proof by induction

8.1) Proof by mathematical induction
8.2) Proving divisibility results
8.3) Proving statements involving matrices

8.1) Proof by mathematical induction Chapter CONTENTS

Prove by induction that for all positive integers n :
$\sum_{r=1}^{n} r(3 r-1)=n^{2}(n+1)$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n}(2 r-1)=n^{2}
$$

Proof

Your turn

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

Proof

Your turn

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n} r 2^{r}=2\left(1+(n-1) 2^{n}\right)
$$

Prove by induction that for all positive integers n :

$$
\sum_{r=1}^{n}\left(\frac{1}{2}\right)^{r}=1-\frac{1}{2^{n}}
$$

Proof

Your turn

Prove by induction that for all positive integers n :
$3^{2 n}-1$ is divisible by 8

Prove by induction that for all positive integers n : $3^{2 n}+11$ is divisible by 4

Proof

Your turn

Prove by induction that for all positive integers n :
$5^{n}+9^{n}+2$ is divisible by 4

Prove by induction that for all positive integers n : $7^{n}+4^{n}+1$ is divisible by 6

Your turn

Prove by induction that for all positive integers n : $8^{n}-3^{n}$ is divisible by 5

Prove by induction that for all positive integers n : $13^{n}-6^{n}$ is divisible by 7

Proof

Your turn

Prove by induction that for all positive integers n :
$2^{6 n}+3^{2 n-2}$ is divisible by 5
Prove by induction that for all positive integers n :
$11^{n+1}+12^{2 n-1}$ is divisible by 133
Proof

Your turn

Prove by induction that for all positive integers n :
$n^{3}+6 n^{2}+8 n$ is divisible by 3

Prove by induction that for all positive integers n :
$n^{3}-7 n+9$ is divisible by 3

Prove by induction that for all positive integers n :

$$
\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{n}=\left(\begin{array}{cc}
8 n+1 & 16 n \\
-4 n & 1-8 n
\end{array}\right)
$$

Prove by induction that for all positive integers n :

$$
\begin{aligned}
\left(\begin{array}{ll}
-2 & 9 \\
-1 & 4
\end{array}\right)^{n}= & \left(\begin{array}{cc}
-3 n+1 & 9 n \\
-n & 3 n+1
\end{array}\right) \\
& \text { Proof }
\end{aligned}
$$

Your turn

Prove by induction that for all positive integers n :

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
2^{n}-1 & 1
\end{array}\right)
$$

Prove by induction that for all positive integers n :

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)^{n}=\left(\begin{array}{cc}
1 & 1-2^{n} \\
0 & 2^{n}
\end{array}\right) \\
\text { Proof }
\end{gathered}
$$

