7.6) The inverse of a linear transformation

Your turn

The triangle T has vertices at A, B and C.
The matrix $M=\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)$ transforms T to the triangle T^{\prime} with vertices at $A^{\prime}(3,4), B^{\prime}(10,4)$ and $C^{\prime}(-3,-4)$. Determine the coordinates of A, B and C.

The triangle T has vertices at A, B and C. The matrix $M=$ $\left(\begin{array}{cc}4 & -1 \\ 3 & 1\end{array}\right)$ transforms T to the triangle T^{\prime} with vertices at $A^{\prime}(4,3), B^{\prime}(4,10)$ and $\mathrm{C}^{\prime}(-4,-3)$. Determine the coordinates of A, B and C.

$$
A(1,0) \quad B(2,4) \quad C(-1,0)
$$

Worked example

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
5 & -2 \\
4 & -3
\end{array}\right) \\
A & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

a) Find $\operatorname{det} M$
b) Describe fully the single geometrical transformation represented by A
c) The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B

Your turn

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
3 & 4 \\
2 & -5
\end{array}\right) \\
A & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

a) Find $\operatorname{det} M$
b) Describe fully the single geometrical transformation represented by A
c) The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B
a) -23
b) Rotation 90° anticlockwise about (0,0)
c) $\left(\begin{array}{cc}-4 & 3 \\ 5 & 2\end{array}\right)$

$$
M=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 3 & -1 \\
0 & 2 & -2
\end{array}\right)
$$

The point (a, b, c) is mapped onto $(-3,-2,1)$ under M. Find the values of a, b and c

The point (a, b, c) is mapped onto $(3,2,-1)$ under M. Find the values of a, b and c

$$
a=10, b=-6, c=-7
$$

Your turn

$$
R=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

a) Find R^{-1}
b) Explain this geometrically
c) Find R^{7999}
d) Find R^{8000}

