7.6) The inverse of a linear transformation

Worked example	Your turn
The triangle <i>T</i> has vertices at <i>A</i> , <i>B</i> and <i>C</i> . The matrix $M = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$ transforms <i>T</i> to the triangle <i>T'</i> with vertices at $A'(3, 4)$, $B'(10, 4)$ and $C'(-3, -4)$. Determine the coordinates of <i>A</i> , <i>B</i> and <i>C</i> .	The triangle <i>T</i> has vertices at <i>A</i> , <i>B</i> and <i>C</i> . The matrix $M = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix}$ transforms <i>T</i> to the triangle <i>T'</i> with vertices at $A'(4,3)$, $B'(4,10)$ and $C'(-4,-3)$. Determine the coordinates of <i>A</i> , <i>B</i> and <i>C</i> .
	A(1,0) B(2,4) C(-1,0)

	Worked example		Your turn
	$M = \begin{pmatrix} 5 & -2 \\ 4 & -3 \end{pmatrix}$		$M = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}$
a)	$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Find det M	a)	$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Find det M
b)	Describe fully the single geometrical transformation represented by A	b)	Describe fully the single geometrical transformation represented by A
c)	The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B	b) F	The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B -23 Rotation 90° anticlockwise about $(0, 0)$ $\begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$

Worked example	Your turn
$M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 3 & -1 \\ 0 & 2 & -2 \end{pmatrix}$ The point (a, b, c) is mapped onto $(-3, -2, 1)$ under M . Find the values of a, b and c	$M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -2 \\ 1 & 3 & -1 \end{pmatrix}$ The point (<i>a</i> , <i>b</i> , <i>c</i>) is mapped onto (3, 2, -1) under <i>M</i> . Find the values of <i>a</i> , <i>b</i> and <i>c</i> a = 10, b = -6, c = -7

Worked example	Your turn
$R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ a) Find R^{-1} b) Explain this geometrically c) Find R^{7999} d) Find R^{8000}	$R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ a) Find R^{-1} b) Explain this geometrically c) Find R^{8001} d) Find R^{8002}
	a) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ b) Reflection is self-inverse. The inverse of reflection in the line $y = -x$ is reflection in the line $y = -x$ again c) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$