7.5) Linear transformations in three dimensions

Your turn

Find the matrix representing:

- reflection in the plane $x=0$

Find the matrix representing:

- reflection in the plane $z=0$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Your turn

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,2,3)$ under the transformation represented by \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,2,3)$ under the transformation represented by \mathbf{M}.
(a) Reflection in the plane $z=0$
(b) $(-1,2,-3)$

Your turn

Find the matrix representing:

- Rotation, angle θ, anticlockwise about the x-axis
- Rotation, angle θ, anticlockwise about the y-axis

Find the matrix representing:

- Rotation, angle θ, anticlockwise about the z-axis

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Your turn

Find the matrix representing:

- Rotation, angle 90°, anticlockwise about the x-axis
- Rotation, angle 180°, anticlockwise about the z-axis

Find the matrix representing:

- Rotation, angle 270°, anticlockwise about the y-axis

Worked example

Your turn

$$
\mathbf{M}=\left(\begin{array}{ccc}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,-2,1)$ under the transformation represented by \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates
($-1,-2,1$) under the transformation represented by \mathbf{M}.
(a) Rotation 30° anticlockwise about the y-axis
(b) $\left(\frac{1-\sqrt{3}}{2},-2, \frac{1+\sqrt{3}}{2}\right)$

