7.4) Using boundary conditions

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}-y=2 e^{-x}$, and that $\frac{d y}{d x}=0$ and $y=0$ at $x=0$.

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}-y=2 e^{x}$, and that $\frac{d y}{d x}=0$ and $y=0$ at $x=0$.

$$
y=-\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}+x e^{x}
$$

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}+25 y=3 \cos 5 x$, and that $\frac{d y}{d x}=5$ and $y=0$ at $x=0$.

Find x in terms of t, given that $\frac{d^{2} y}{d x^{2}}+x=3 \sin 2 t$, and that $\frac{d x}{d t}=1$ and $x=0$ at $t=0$.

$$
x=3 \sin t-\sin 2 t
$$

Your turn

Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+16 y=\sin 4 x
$$

subject to boundary conditions $y=0, \frac{d y}{d x}=0$ when $x=0$

Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+9 y=\sin 3 x
$$

subject to boundary conditions $y=0, \frac{d y}{d x}=0$ when $x=0$

$$
y=\frac{1}{18} \sin 3 x-\frac{1}{6} x \cos 3 x
$$

