7.2) Reflections and rotations

Find a 2×2 matrix that represents: - A reflection in the y-axis.

Find a 2×2 matrix that represents: - A reflection in the x-axis.

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- A reflection in the line $y=-x$

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Find a 2×2 matrix that represents:

- Rotation 90° anticlockwise about the origin

Find a 2×2 matrix that represents:

- Rotation 270° anticlockwise about the origin

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Find a 2×2 matrix that represents:

- Rotation 90° anticlockwise about the origin

Find a 2×2 matrix that represents:

- Rotation 270° anticlockwise about the origin

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Describe fully the transformation described by the matrix $\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$

Describe fully the transformation
described by the matrix $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
Rotation 45° anticlockwise about the origin

For these transformations, state any invariant lines/points:

- reflection in the line $y=-x$
- Rotation 90° anticlockwise about the origin

For these transformations, state any invariant lines/points:

- reflection in the line $y=x$

Invariant lines:
$y=x$
Any straight line with gradient $-1(y=-x+k)$
Invariant points:
All points on those lines

- Rotation 180° about the origin

Invariant lines:
Any straight line through origin $(y=m x)$
Invariant points:
$(0,0)$

Your turn

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

U is the single geometrical transformation represented by the matrix P.
Given that U maps the point with coordinates (a, b) onto the point with coordinates $(2 a-3,1-b)$, find the values of a and b

$$
P=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

U is the single geometrical transformation represented by the matrix P.
Given that U maps the point with coordinates (a, b) onto the point with coordinates
$(3+2 a, b+1)$, find the values of a and b

$$
a=-2, b=1
$$

