Find general solutions to:

$$
\frac{d y}{d x}+2 y=e^{x}
$$

$$
\frac{d y}{d x}-y=e^{2 x}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}-4 y=e^{x} \\
y=-\frac{1}{3} e^{x}+c e^{4 x}
\end{gathered}
$$

Find general solutions to:

$$
\cos x \frac{d y}{d x}+y \sin x=1
$$

Find the general solution to:

$$
\cos x \frac{d y}{d x}+2 y \sin x=\cos ^{4} x
$$

$$
y=\cos ^{2} x(\sin x+c)
$$

Your turn

Find the particular solution such that $y=3$ when $x=\pi$:

$$
\cos x \frac{d y}{d x}+y \sin x=1
$$

Find the particular solution such that
$y=2$ when $x=0$:

$$
\cos x \frac{d y}{d x}+2 y \sin x=\cos ^{4} x
$$

$$
y=\cos ^{2} x(\sin x+2)
$$

Find the particular solution such that $y=2$ when $x=0$:

$$
\cos x \frac{d y}{d x}-y=1,-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

Find the particular solution such that $y=2$ when $x=0$:

$$
\begin{gathered}
\cos x \frac{d y}{d x}+y=1,-\frac{\pi}{2}<x<\frac{\pi}{2} \\
y=1+\frac{\cos x}{1+\sin x}
\end{gathered}
$$

Find general solutions to:

$$
x \frac{d y}{d x}+3 y=\frac{\ln x}{x}, \quad x>0
$$

Find the general solution to:

$$
\begin{gathered}
x \frac{d y}{d x}+5 y=\frac{\ln x}{x}, \quad x>0 \\
y=\frac{\ln x}{4 x}-\frac{1}{16 x}+\frac{c}{x^{5}}
\end{gathered}
$$

Your turn

Solve the differential equation, giving y in terms of x, where

$$
x^{4} \frac{d y}{d x}-x^{3} y=1
$$

Solve the differential equation, giving y in terms of x, where

$$
x^{3} \frac{d y}{d x}-x^{2} y=1
$$

$$
\text { and } y=1 \text { at } x=1
$$

$$
\text { and } y=1 \text { at } x=1
$$

$$
y=-\frac{1}{3 x^{2}}+\frac{4 x}{3}
$$

