Your turn
eral solution to: $\frac{dy}{dx} - 4y = e^x$
$= -\frac{1}{3}e^x + ce^{4x}$

Worked example	Your turn
Find general solutions to: $\cos x \frac{dy}{dx} + y \sin x = 1$	Find the general solution to: $\cos x \frac{dy}{dx} + 2y \sin x = \cos^4 x$
	$y = \cos^2 x \left(\sin x + c \right)$

Worked example	Your turn
Find the particular solution such that $y = 3$ when $x = \pi$: $\cos x \frac{dy}{dx} + y \sin x = 1$	Find the particular solution such that y = 2 when $x = 0$: $\cos x \frac{dy}{dx} + 2y \sin x = \cos^4 x$ $y = \cos^2 x (\sin x + 2)$

Worked example	Your turn
Find general solutions to: $x \frac{dy}{dx} + 3y = \frac{\ln x}{x}, \qquad x > 0$	Find the general solution to: $x \frac{dy}{dx} + 5y = \frac{\ln x}{x}, x > 0$
	$y = \frac{\ln x}{4x} - \frac{1}{16x} + \frac{c}{x^5}$

Worked example	Your turn
Solve the differential equation, giving y	Solve the differential equation, giving y
in terms of x, where	in terms of x, where
$x^4 \frac{dy}{dx} - x^3 y = 1$	$x^3\frac{dy}{dx} - x^2y = 1$
and $y = 1$ at $x = 1$	and $y = 1$ at $x = 1$
	$y = -\frac{1}{3x^2} + \frac{4x}{3}$