7.1) Linear transformations in two dimensions

Your turn

Find matrices to represent these linear transformations.
a) $T:\binom{x}{y} \rightarrow\binom{3 y-x}{2 x}$
b) $V:\binom{x}{y} \rightarrow\binom{-y}{x+3 y}$

Find matrices to represent these linear transformations.
a) $T:\binom{x}{y} \rightarrow\binom{2 y+x}{3 x}$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right)
$$

b) $V:\binom{x}{y} \rightarrow\binom{-2 y}{3 x+y}$

$$
\left(\begin{array}{cc}
0 & -2 \\
3 & 1
\end{array}\right)
$$

Worked example
A rectangle R has vertices
$(2,1),(4,1),(4,2)$ and $(2,2)$
Find the vertices of the image of R under the transformation given by the matrix
$\boldsymbol{M}=\left(\begin{array}{cc}1 & 3 \\ 3 & -1\end{array}\right)$.
Sketch R and its image, R^{\prime} on a coordinate grid.

A square has vertices
$(1,1),(3,1),(3,3)$ and $(1,3)$
Find the vertices of the image of S under the transformation given by the matrix
$\boldsymbol{M}=\left(\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right)$.
Sketch S and the image of S on a coordinate grid.

$$
(1,3),(-1,7),(3,9),(5,5)
$$

Determine if the point $(2,5)$ is invariant under the transformation given by the matrix:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 6 \\
4 & 3
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Determine if the point $(4,6)$ is invariant under the transformation given by the matrix:

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right) \\
\text { No }
\end{gathered}
$$

Your turn

Determine whether $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ has any lines
of invariant points

Determine whether $\left(\begin{array}{cc}5 & -2 \\ 3 & -0.5\end{array}\right)$ has any
lines of invariant points

$$
y=2 x
$$

Your turn

Show that the matrix $\left(\begin{array}{ll}2 & -5 \\ 4 & -3\end{array}\right)$ has no \quad Show that the matrix $\left(\begin{array}{ll}4 & -3 \\ 2 & -5\end{array}\right)$ has no invariant points other than the origin invariant points other than the origin

$$
\begin{aligned}
& \quad\left(\begin{array}{ll}
4 & -3 \\
2 & -5
\end{array}\right)\binom{x}{y}=\binom{x}{y} \\
& 4 x-3 y=x->y=x \\
& 2 x-5 y=y->y=\frac{1}{3} x \\
& x=\frac{1}{3} x->x=0, y=0 \\
& \therefore(0,0) \text { is the only invariant point }
\end{aligned}
$$

Your turn

Find the invariant lines of the transformation given by $\left(\begin{array}{ll}6 & 5 \\ 2 & 3\end{array}\right)$

Find the invariant lines of the transformation given by $\left(\begin{array}{ll}3 & 2 \\ 5 & 6\end{array}\right)$

$$
\begin{aligned}
& y=\frac{5}{2} x+c \\
& y=-x
\end{aligned}
$$

