7.1) Linear transformations in two dimensions

Worked example	Your turn
Find matrices to represent these linear transformations. a) $T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 3y - x \\ 2x \end{pmatrix}$	Find matrices to represent these linear transformations. a) $T: \begin{pmatrix} \chi \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2y + x \\ 3x \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$
b) $V: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x+3y \end{pmatrix}$	b) $V: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -2y \\ 3x + y \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 3 & 1 \end{pmatrix}$

Worked example	Your turn
A rectangle R has vertices (2, 1), (4, 1), (4, 2) and (2, 2) Find the vertices of the image of R under the transformation given by the matrix $M = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$. Sketch R and its image, R' on a coordinate grid.	A square has vertices (1,1), (3,1), (3,3) and (1,3) Find the vertices of the image of <i>S</i> under the transformation given by the matrix $M = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$. Sketch <i>S</i> and the image of <i>S</i> on a coordinate grid. (1,3), (-1,7), (3,9), (5,5)

Worked example	Your turn
Determine if the point (2, 5) is invariant under the transformation given by the matrix: $\begin{pmatrix} 1 & 6 \\ 4 & 3 \end{pmatrix}$	Determine if the point (4, 6) is invariant under the transformation given by the matrix: $\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$ No
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	

Worked exa	ample	Your turn
Determine whether $\begin{pmatrix} 1\\ 3 \end{pmatrix}$ of invariant points	$\binom{2}{4}$ has any lines	lines of invariant points
		y = 2x

Worked example	Your turn
Show that the matrix $\begin{pmatrix} 2 & -5 \\ 4 & -3 \end{pmatrix}$ has no invariant points other than the origin	Show that the matrix $\begin{pmatrix} 4 & -3 \\ 2 & -5 \end{pmatrix}$ has no invariant points other than the origin
	$\begin{pmatrix} 4 & -3 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $4x - 3y = x \rightarrow y = x$ $2x - 5y = y \rightarrow y = \frac{1}{3}x$ $x = \frac{1}{3}x \rightarrow x = 0, y = 0$ $\therefore (0, 0) \text{ is the only invariant point}$

Worked example	Your turn
Find the invariant lines of the	Find the invariant lines of the
transformation given by $\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$	transformation given by $\begin{pmatrix} 3 & 2 \\ 5 & 6 \end{pmatrix}$
	$y = \frac{5}{2}x + c$ $y = -x$
	y = -x