7) Methods in differential equations

7.1) First-order differential equations

7.2) Second-order homogenous differential equations

7.3) Second-order non-homogenous differential equations

7.4) Using boundary conditions

7.1) First-order differential equations Chapter CONTENTS

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = 2$	Find the general solution to: $\frac{dy}{dx} = -3$
	y = -3x + c
$\frac{dy}{dx} = -\frac{1}{2}$	

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = 3x^2$	Find the general solution to: $\frac{dy}{dx} = 2x$ $y = x^{2} + c$
$\frac{dy}{dx} = 4x^3$	$y = x^2 + c$

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = \frac{4y}{x}$	Find the general solution to: $\frac{dy}{dx} = \frac{2y}{x}$ $y = Ax^{2}$
$\frac{dy}{dx} = \frac{3y}{x}$	

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = \sin x$	Find the general solution to: $\frac{dy}{dx} = \cos x$
$\frac{dy}{dx} = \sec^2 x$	$y = \sin x + c$

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = y \tan x$	Find the general solution to: $\frac{dy}{dx} = y \cot x, 0 < x < \pi$
	$y = A \sin x$

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = -\frac{x}{y}$	Find the general solution to: $\frac{dy}{dx} = -\frac{y}{x}$
	$y = \pm \frac{A}{x}$, where $A = e^c$
$\frac{dy}{dx} = \frac{x}{y}$	

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} = xy + y$	Find the general solution to: $\frac{dy}{dx} = xy + x$ $y = Ae^{\frac{1}{2}x^{2}} - 1$
$\frac{dy}{dx} = xy - x$	

Worked example	Your turn
Express as the derivative of one product: $x^2 \frac{dy}{dx} + 2xy$	Express as the derivative of one product: $x^{3} \frac{dy}{dx} + 3x^{2}y$
	$\frac{d}{dx}(x^3y)$
$(\ln x)\frac{dy}{dx} + \frac{y}{x}$	$e^x \frac{dy}{dx} + e^x y$
	$\frac{d}{dx}(e^x y)$
$cos(x)\frac{dy}{dx} - ysin(x)$	$\sin(x)\frac{dy}{dx} + y\cos(x)$
	$\frac{d}{dx}(y\sin x)$

Worked example	Your turn
Find general solutions to: $x^{4}\frac{dy}{dx} + 4x^{3}y = \cos x$	Find the general solution to: $x^{3}\frac{dy}{dx} + 3x^{2}y = \sin x$
	$y = -\frac{1}{x^3}\cos x + \frac{c}{x^3}$

Worked example	Your turn
Worked example Find general solutions to: $\frac{1}{x^2} \frac{dy}{dx} - \frac{2}{x^3} y = e^x$	Find the general solution to: $\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = e^x$ $y = x(e^x + c)$

Worked example	Your turn
Find general solutions to:	Find the general solution to:
$8x^{3}y\frac{dy}{dx} + 12x^{2}y^{2} = x^{4}$	$4xy\frac{dy}{dx} + 2y^2 = x^2$
	$y^2 = \frac{1}{6}x^2 + \frac{c}{2x}$

Worked example	Your turn
Find general solutions to: $\frac{dy}{dx} + 2y = e^x$	Find the general solution to: $\frac{dy}{dx} - 4y = e^x$
	$y = -\frac{1}{3}e^x + ce^{4x}$
$\frac{dy}{dx} - y = e^{2x}$	

Worked example	Your turn
Find general solutions to:	Find the general solution to:
$\cos x \frac{dy}{dx} + y \sin x = 1$	$\cos x \frac{dy}{dx} + 2y \sin x = \cos^4 x$
	$y = \cos^2 x \left(\sin x + c \right)$

Worked example	Your turn
Find the particular solution such that $y = 3$ when $x = \pi$: $\cos x \frac{dy}{dx} + y \sin x = 1$	Find the particular solution such that y = 2 when $x = 0$: $\cos x \frac{dy}{dx} + 2y \sin x = \cos^4 x$ $y = \cos^2 x (\sin x + 2)$

Worked example	Your turn
Worked example Find the particular solution such that y = 2 when $x = 0$: $\cos x \frac{dy}{dx} - y = 1, -\frac{\pi}{2} < x < \frac{\pi}{2}$	Find the particular solution such that y = 2 when $x = 0$: $\cos x \frac{dy}{dx} + y = 1, -\frac{\pi}{2} < x < \frac{\pi}{2}$ $y = 1 + \frac{\cos x}{1 + \sin x}$

Worked example	Your turn
Find general solutions to: $x \frac{dy}{dx} + 3y = \frac{\ln x}{x}, \qquad x > 0$	Find the general solution to: $x \frac{dy}{dx} + 5y = \frac{\ln x}{x}, \qquad x > 0$
	$y = \frac{\ln x}{4x} - \frac{1}{16x} + \frac{c}{x^5}$

Worked example	Your turn
Solve the differential equation, giving y in terms of x, where $x^4 \frac{dy}{dx} - x^3 y = 1$	Solve the differential equation, giving y in terms of x, where $x^{3}\frac{dy}{dx} - x^{2}y = 1$
and $y = 1$ at $x = 1$	and $y = 1$ at $x = 1$ $y = -\frac{1}{3x^2} + \frac{4x}{3}$

7.2) Second-order homogenous differential equations

Chapter CONTENTS

Worked example	Your turn
Find general solutions to: $\frac{d^2y}{dx^2} = 6x$	Find the general solution to: $\frac{d^2y}{dx^2} = 12x$
-2	$y = 2x^3 + Ax + B$
$\frac{d^2y}{dx^2} = 24x^2$	

Worked example	Your turn
Find general solutions to: $2\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 3y = 0$	Find the general solution to: $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 3y = 0$ $y = Ae^{-\frac{3}{2}x} + Be^{-x}$
$3\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$	$y = Ae^{-2} + Be^{-2}$

Worked example	Your turn
Find general solutions to: $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 0$	Find the general solution to: $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$ $y = (A + Bx)e^{3x}$
$\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0$	

Worked example	Your turn
Find general solutions to: $\frac{d^2y}{dx^2} + 9y = 0$	Find the general solution to: $\frac{d^2y}{dx^2} + 16y = 0$
$\frac{d^2y}{dx^2} + 25y = 0$	$y = A\cos 4x + B\sin 4x$

Worked example	Your turn
Find general solutions to: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 15y = 0$	Find general solutions to: $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 8y = 0$ $y = Ae^{-4x} + Be^{-2x}$
$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 0$	$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$ $y = (A + Bx)e^{-3x}$
$\frac{d^2y}{dx^2} + 25y = 0$	$\frac{d^2y}{dx^2} + 9y = 0$ $y = A\cos 3x + B\sin 3x$
$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 34y = 0$	$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 10y = 0$ $y = e^{-3x} (A\cos x + B\sin x)$

7.3) Second-order non-homogenous differential equations Chapter CONTENTS

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 4$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3$ $y = Ae^{3x} + Be^{2x} + \frac{1}{2}$

Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 4x$ Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x$ $y = Ae^{3x} + Be^{2x} + \frac{1}{2}x + \frac{5}{12}$	Worked example	Your turn
		$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 4x^2$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x^2$
	$y = Ae^{3x} + Be^{2x} + \frac{1}{2}x^2 + \frac{5}{6}x + \frac{19}{36}$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-x}$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x$ $y = Ae^{3x} + Be^{2x} + \frac{1}{2}e^x$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 7\sin 4x$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 13\sin 3x$ $y = Ae^{3x} + Be^{2x} - \frac{1}{6}\sin 3x + \frac{5}{6}\cos 3x$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-3x}$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}$ $y = Ae^{3x} + Be^{2x} - xe^{2x}$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = 2$	Find the general solution to: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 3$ $y = A + Be^{2x} - \frac{3}{2}x$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = x^2 - 2x + 3$	Find the general solution to: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = x^2 - 3x + 2$ $y = Ae^{4x} + Be^x + \frac{1}{4}x^2 - \frac{1}{8}x + \frac{7}{32}$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 2x^2 - x + 1$	Find the general solution to: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} = 24x^2$ $y = A + Be^{-4x} + 2x^3 - \frac{3}{2}x^2 + \frac{3}{4}x$

Worked example	Your turn
Find the general solution to: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 1 = e^x$	Find the general solution to: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 1 = e^x$ $y = \left(A + Bx + \frac{1}{2}x^2\right)e^x$

Worked example	Your turn
Find the general solution to: $\frac{d^2x}{dt^2} - 5\frac{dx}{dt} + 6x = 2\sin t - \cos t$	Find the general solution to: $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2\cos t - \sin t$ $x = Ae^{-3t} + Be^{-3t} + \frac{3}{10}\cos t + \frac{1}{10}\sin t$

7.4) Using boundary conditions

Chapter CONTENTS

Worked example	Your turn
Find y in terms of x, given that $\frac{d^2y}{dx^2} - y = 2e^{-x}$,	Find y in terms of x, given that $\frac{d^2y}{dx^2} - y = 2e^x$, and
and that $\frac{dy}{dx} = 0$ and $y = 0$ at $x = 0$.	that $\frac{dy}{dx} = 0$ and $y = 0$ at $x = 0$.
	$y = -\frac{1}{2}e^x + \frac{1}{2}e^{-x} + xe^x$

Worked example	Your turn
Find y in terms of x, given that $\frac{d^2y}{dx^2} + 25y = 3\cos 5x$, and that $\frac{dy}{dx} = 5$ and $y = 0$ at $x = 0$.	Find x in terms of t, given that $\frac{d^2y}{dx^2} + x = 3 \sin 2t$, and that $\frac{dx}{dt} = 1$ and $x = 0$ at $t = 0$.
	$x = 3\sin t - \sin 2t$

Worked example

Your turn

Solve the differential equation

$$\frac{d^2y}{dx^2} + 16y = \sin 4x$$

subject to boundary conditions y = 0, $\frac{dy}{dx} = 0$ when x = 0

Solve the differential equation

$$\frac{d^2y}{dx^2} + 9y = \sin 3x$$

subject to boundary conditions $y = 0, \frac{dy}{dx} = 0$ when $x = 0$
$$y = \frac{1}{18} \sin 3x - \frac{1}{6}x \cos 3x$$