7) Methods in differential equations

7.1) First-order differential equations

7.2) Second-order homogenous differential equations
7.3) Second-order non-homogenous differential equations
7.4) Using boundary conditions
7.1) First-order differential equations Chapter CONTENTS

Find general solutions to:

$$
\frac{d y}{d x}=2
$$

$$
\frac{d y}{d x}=-\frac{1}{2}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}=-3 \\
y=-3 x+c
\end{gathered}
$$

Find general solutions to:

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2} \\
& \frac{d y}{d x}=4 x^{3}
\end{aligned}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}=2 x \\
y=x^{2}+c
\end{gathered}
$$

Find general solutions to:

$$
\frac{d y}{d x}=\frac{4 y}{x}
$$

$$
\frac{d y}{d x}=\frac{3 y}{x}
$$

Find the general solution to:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 y}{x} \\
& y=A x^{2}
\end{aligned}
$$

Find general solutions to:

$$
\frac{d y}{d x}=\sin x
$$

$$
\frac{d y}{d x}=\sec ^{2} x
$$

Find the general solution to:

$$
\frac{d y}{d x}=\cos x
$$

$$
y=\sin x+c
$$

Find general solutions to:

$$
\frac{d y}{d x}=y \tan x
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}=y \cot x, 0<x<\pi \\
y=A \sin x
\end{gathered}
$$

Find general solutions to:

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

$$
\frac{d y}{d x}=\frac{x}{y}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{y}{x} \\
y= \pm \frac{A}{x}, \text { where } A=e^{c}
\end{gathered}
$$

Find general solutions to:

$$
\frac{d y}{d x}=x y+y
$$

$$
\frac{d y}{d x}=x y-x
$$

Find the general solution to:

$$
\begin{aligned}
& \frac{d y}{d x}=x y+x \\
& y=A e^{\frac{1}{2} x^{2}}-1
\end{aligned}
$$

Express as the derivative of one product:

$$
x^{2} \frac{d y}{d x}+2 x y
$$

$$
(\ln x) \frac{d y}{d x}+\frac{y}{x}
$$

$$
\cos (x) \frac{d y}{d x}-y \sin (x)
$$

Express as the derivative of one product:

$$
\begin{gathered}
x^{3} \frac{d y}{d x}+3 x^{2} y \\
\frac{d}{d x}\left(x^{3} y\right) \\
e^{x} \frac{d y}{d x}+e^{x} y \\
\frac{d}{d x}\left(e^{x} y\right) \\
\sin (x) \frac{d y}{d x}+y \cos (x) \\
\frac{d}{d x}(y \sin x)
\end{gathered}
$$

Find general solutions to:

$$
x^{4} \frac{d y}{d x}+4 x^{3} y=\cos x
$$

Find the general solution to:

$$
\begin{aligned}
& x^{3} \frac{d y}{d x}+3 x^{2} y=\sin x \\
& y=-\frac{1}{x^{3}} \cos x+\frac{c}{x^{3}}
\end{aligned}
$$

Find general solutions to:

$$
\frac{1}{x^{2}} \frac{d y}{d x}-\frac{2}{x^{3}} y=e^{x}
$$

Find the general solution to:
$\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=e^{x}$

$$
y=x\left(e^{x}+c\right)
$$

Find general solutions to:

$$
8 x^{3} y \frac{d y}{d x}+12 x^{2} y^{2}=x^{4}
$$

Find the general solution to:

$$
\begin{gathered}
4 x y \frac{d y}{d x}+2 y^{2}=x^{2} \\
y^{2}=\frac{1}{6} x^{2}+\frac{c}{2 x}
\end{gathered}
$$

Find general solutions to:

$$
\frac{d y}{d x}+2 y=e^{x}
$$

$$
\frac{d y}{d x}-y=e^{2 x}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d y}{d x}-4 y=e^{x} \\
y=-\frac{1}{3} e^{x}+c e^{4 x}
\end{gathered}
$$

Find general solutions to:

$$
\cos x \frac{d y}{d x}+y \sin x=1
$$

Find the general solution to:

$$
\cos x \frac{d y}{d x}+2 y \sin x=\cos ^{4} x
$$

$$
y=\cos ^{2} x(\sin x+c)
$$

Your turn

Find the particular solution such that $y=3$ when $x=\pi$:

$$
\cos x \frac{d y}{d x}+y \sin x=1
$$

Find the particular solution such that
$y=2$ when $x=0$:

$$
\cos x \frac{d y}{d x}+2 y \sin x=\cos ^{4} x
$$

$$
y=\cos ^{2} x(\sin x+2)
$$

Find the particular solution such that $y=2$ when $x=0$:

$$
\cos x \frac{d y}{d x}-y=1,-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

Find the particular solution such that $y=2$ when $x=0$:

$$
\begin{gathered}
\cos x \frac{d y}{d x}+y=1,-\frac{\pi}{2}<x<\frac{\pi}{2} \\
y=1+\frac{\cos x}{1+\sin x}
\end{gathered}
$$

Find general solutions to:

$$
x \frac{d y}{d x}+3 y=\frac{\ln x}{x}, \quad x>0
$$

Find the general solution to:

$$
\begin{gathered}
x \frac{d y}{d x}+5 y=\frac{\ln x}{x}, \quad x>0 \\
y=\frac{\ln x}{4 x}-\frac{1}{16 x}+\frac{c}{x^{5}}
\end{gathered}
$$

Your turn

Solve the differential equation, giving y in terms of x, where

$$
x^{4} \frac{d y}{d x}-x^{3} y=1
$$

Solve the differential equation, giving y in terms of x, where

$$
x^{3} \frac{d y}{d x}-x^{2} y=1
$$

$$
\text { and } y=1 \text { at } x=1
$$

$$
\text { and } y=1 \text { at } x=1
$$

$$
y=-\frac{1}{3 x^{2}}+\frac{4 x}{3}
$$

Find general solutions to:

$$
\frac{d^{2} y}{d x^{2}}=6 x
$$

$$
\frac{d^{2} y}{d x^{2}}=24 x^{2}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=12 x \\
y=2 x^{3}+A x+B
\end{gathered}
$$

Find general solutions to:

$$
\begin{aligned}
& 2 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+3 y=0 \\
& 3 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0
\end{aligned}
$$

Find the general solution to:

$$
\begin{gathered}
2 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+3 y=0 \\
y=A e^{-\frac{3}{2} x}+B e^{-x}
\end{gathered}
$$

Find general solutions to:

$$
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=0
$$

$$
\frac{d^{2} y}{d x^{2}}+10 \frac{d y}{d x}+25 y=0
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0 \\
y=(A+B x) e^{3 x}
\end{gathered}
$$

Find general solutions to:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+9 y=0 \\
& \frac{d^{2} y}{d x^{2}}+25 y=0
\end{aligned}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+16 y=0 \\
y=A \cos 4 x+B \sin 4 x
\end{gathered}
$$

Your turn

Find general solutions to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=0 \\
\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+25 y=0 \\
\frac{d^{2} y}{d x^{2}}+25 y=0 \\
\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+34 y=0
\end{gathered}
$$

Find general solutions to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+8 y=0 \\
y=A e^{-4 x}+B e^{-2 x} \\
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0 \\
y=(A+B x) e^{-3 x} \\
y=A \cos 3 x+B \sin 3 x \\
\frac{d^{2} y}{d x^{2}}+9 y=0 \\
y=e^{-3 x}(A \cos x+B \sin x)
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=4
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=3 \\
y=A e^{3 x}+B e^{2 x}+\frac{1}{2}
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=4 x
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=3 x \\
y=A e^{3 x}+B e^{2 x}+\frac{1}{2} x+\frac{5}{12}
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=4 x^{2}
$$

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=3 x^{2}
$$

$$
y=A e^{3 x}+B e^{2 x}+\frac{1}{2} x^{2}+\frac{5}{6} x+\frac{19}{36}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{-x}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{x} \\
y=A e^{3 x}+B e^{2 x}+\frac{1}{2} e^{x}
\end{gathered}
$$

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=7 \sin 4 x
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=13 \sin 3 x \\
y=A e^{3 x}+B e^{2 x}-\frac{1}{6} \sin 3 x+\frac{5}{6} \cos 3 x
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{-3 x}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{2 x} \\
y=A e^{3 x}+B e^{2 x}-x e^{2 x}
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=2
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=3 \\
y=A+B e^{2 x}-\frac{3}{2} x
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=x^{2}-2 x+3
$$

Find the general solution to:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+4 y=x^{2}-3 x+2 \\
y= & A e^{4 x}+B e^{x}+\frac{1}{4} x^{2}-\frac{1}{8} x+\frac{7}{32}
\end{aligned}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}=2 x^{2}-x+1
$$

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=24 x^{2}
$$

$$
y=A+B e^{-4 x}+2 x^{3}-\frac{3}{2} x^{2}+\frac{3}{4} x
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+1=e^{x}
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+1=e^{x} \\
y=\left(A+B x+\frac{1}{2} x^{2}\right) e^{x}
\end{gathered}
$$

Your turn

Find the general solution to:

$$
\frac{d^{2} x}{d t^{2}}-5 \frac{d x}{d t}+6 x=2 \sin t-\cos t
$$

Find the general solution to:

$$
\begin{gathered}
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=2 \cos t-\sin t \\
x=A e^{-3 t}+B e^{-3 t}+\frac{3}{10} \cos t+\frac{1}{10} \sin t
\end{gathered}
$$

7.4) Using boundary conditions

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}-y=2 e^{-x}$, and that $\frac{d y}{d x}=0$ and $y=0$ at $x=0$.

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}-y=2 e^{x}$, and that $\frac{d y}{d x}=0$ and $y=0$ at $x=0$.

$$
y=-\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}+x e^{x}
$$

Find y in terms of x, given that $\frac{d^{2} y}{d x^{2}}+25 y=3 \cos 5 x$, and that $\frac{d y}{d x}=5$ and $y=0$ at $x=0$.

Find x in terms of t, given that $\frac{d^{2} y}{d x^{2}}+x=3 \sin 2 t$, and that $\frac{d x}{d t}=1$ and $x=0$ at $t=0$.

$$
x=3 \sin t-\sin 2 t
$$

Your turn

Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+16 y=\sin 4 x
$$

subject to boundary conditions $y=0, \frac{d y}{d x}=0$ when $x=0$

Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+9 y=\sin 3 x
$$

subject to boundary conditions $y=0, \frac{d y}{d x}=0$ when $x=0$

$$
y=\frac{1}{18} \sin 3 x-\frac{1}{6} x \cos 3 x
$$

