7) Linear transformations

7.1) Linear transformations in two dimensions
7.2) Reflections and rotations
7.3) Enlargements and stretches
7.4) Successive transformations
7.5) Linear transformations in three dimensions
7.6) The inverse of a linear transformation
7.1) Linear transformations in two dimensions Chapter CONTENTS

Your turn

Find matrices to represent these linear transformations.
a) $T:\binom{x}{y} \rightarrow\binom{3 y-x}{2 x}$
b) $V:\binom{x}{y} \rightarrow\binom{-y}{x+3 y}$

Find matrices to represent these linear transformations.
a) $T:\binom{x}{y} \rightarrow\binom{2 y+x}{3 x}$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right)
$$

b) $V:\binom{x}{y} \rightarrow\binom{-2 y}{3 x+y}$

$$
\left(\begin{array}{cc}
0 & -2 \\
3 & 1
\end{array}\right)
$$

Worked example
A rectangle R has vertices
$(2,1),(4,1),(4,2)$ and $(2,2)$
Find the vertices of the image of R under the transformation given by the matrix
$\boldsymbol{M}=\left(\begin{array}{cc}1 & 3 \\ 3 & -1\end{array}\right)$.
Sketch R and its image, R^{\prime} on a coordinate grid.

A square has vertices
$(1,1),(3,1),(3,3)$ and $(1,3)$
Find the vertices of the image of S under the transformation given by the matrix
$\boldsymbol{M}=\left(\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right)$.
Sketch S and the image of S on a coordinate grid.

$$
(1,3),(-1,7),(3,9),(5,5)
$$

Determine if the point $(2,5)$ is invariant under the transformation given by the matrix:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 6 \\
4 & 3
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Determine if the point $(4,6)$ is invariant under the transformation given by the matrix:

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right) \\
\text { No }
\end{gathered}
$$

Your turn

Determine whether $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ has any lines
of invariant points

Determine whether $\left(\begin{array}{cc}5 & -2 \\ 3 & -0.5\end{array}\right)$ has any
lines of invariant points

$$
y=2 x
$$

Your turn

Show that the matrix $\left(\begin{array}{ll}2 & -5 \\ 4 & -3\end{array}\right)$ has no \quad Show that the matrix $\left(\begin{array}{ll}4 & -3 \\ 2 & -5\end{array}\right)$ has no invariant points other than the origin invariant points other than the origin

$$
\begin{aligned}
& \quad\left(\begin{array}{ll}
4 & -3 \\
2 & -5
\end{array}\right)\binom{x}{y}=\binom{x}{y} \\
& 4 x-3 y=x->y=x \\
& 2 x-5 y=y->y=\frac{1}{3} x \\
& x=\frac{1}{3} x->x=0, y=0 \\
& \therefore(0,0) \text { is the only invariant point }
\end{aligned}
$$

Your turn

Find the invariant lines of the transformation given by $\left(\begin{array}{ll}6 & 5 \\ 2 & 3\end{array}\right)$

Find the invariant lines of the transformation given by $\left(\begin{array}{ll}3 & 2 \\ 5 & 6\end{array}\right)$

$$
\begin{aligned}
& y=\frac{5}{2} x+c \\
& y=-x
\end{aligned}
$$

7.2) Reflections and rotations

Find a 2×2 matrix that represents: - A reflection in the y-axis.

Find a 2×2 matrix that represents: - A reflection in the x-axis.

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- A reflection in the line $y=-x$

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Find a 2×2 matrix that represents:

- Rotation 90° anticlockwise about the origin

Find a 2×2 matrix that represents:

- Rotation 270° anticlockwise about the origin

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Find a 2×2 matrix that represents:

- Rotation 90° anticlockwise about the origin

Find a 2×2 matrix that represents:

- Rotation 270° anticlockwise about the origin

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Describe fully the transformation described by the matrix $\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$

Describe fully the transformation
described by the matrix $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
Rotation 45° anticlockwise about the origin

For these transformations, state any invariant lines/points:

- reflection in the line $y=-x$
- Rotation 90° anticlockwise about the origin

For these transformations, state any invariant lines/points:

- reflection in the line $y=x$

Invariant lines:
$y=x$
Any straight line with gradient $-1(y=-x+k)$
Invariant points:
All points on those lines

- Rotation 180° about the origin

Invariant lines:
Any straight line through origin $(y=m x)$
Invariant points:
$(0,0)$

Your turn

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

U is the single geometrical transformation represented by the matrix P.
Given that U maps the point with coordinates (a, b) onto the point with coordinates $(2 a-3,1-b)$, find the values of a and b

$$
P=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

U is the single geometrical transformation represented by the matrix P.
Given that U maps the point with coordinates (a, b) onto the point with coordinates
$(3+2 a, b+1)$, find the values of a and b

$$
a=-2, b=1
$$

Describe the effect of the following matrices: Describe the effect of the following matrices:

$\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
$\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$

Worked example

Your turn

A triangle T has vertices $(1,1),(1,2)$ and $(2,2)$.
a) Find the vertices of the image of T under the transformation given by the matrix $\boldsymbol{M}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.
b) Sketch T and its image, T^{\prime} on a coordinate grid.
c) Describe the geometric transformation.

A triangle T has vertices $(1,1),(1,2)$ and $(2,2)$.
a) Find the vertices of the image of T under the transformation given by the matrix $\boldsymbol{M}=\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$.
b) Sketch T and its image, T^{\prime} on a coordinate grid.
c) Describe the geometric transformation.
a) $(3,2),(3,4)$ and $(6,4)$
b) Sketch
c) The triangle has been stretched by a scale factor of 3 parallel to the x-axis and by a scale factor of 2 parallel to the y-axis

Shape B is transformed to shape C by the matrix

$$
A=\left(\begin{array}{cc}
2 & -3 \\
-4 & 9
\end{array}\right)
$$

Given that the area of C is 72 square units, find the area of B

Shape R is transformed to shape S by the matrix

$$
A=\left(\begin{array}{cc}
2 & -2 \\
-1 & 3
\end{array}\right)
$$

Given that the area of S is 72 square units, find the area of R
7.4) Successive transformations

Worked example

Your turn

Represent as a single matrix the transformation representing a reflection in the line $y=x$ followed by a stretch parallel to the x-axis by a factor of 4 .

Represent as a single matrix the transformation representing a rotation 90° anticlockwise about the point $(0,0)$ followed by a reflection in the line x-axis. What single transformation is this?

Represent as a single matrix the transformation representing a reflection in the line $y=-x$ followed by a stretch parallel to the y-axis by a factor of 3 .

$$
\left(\begin{array}{cc}
0 & -3 \\
-1 & 0
\end{array}\right)
$$

Represent as a single matrix the transformation representing a rotation 270° anticlockwise about the point $(0,0)$ followed by a reflection in the line y-axis. What single transformation is this?

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Reflection in the line $y=-x$

Your turn

The matrix R is given by $R=\left(\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$
a) Find R^{3}
b) Describe the geometric transformation represented by R^{3}
c) Hence describe the geometric transformation represented by R
d) Write down R^{900}

The matrix R is given by $R=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
a) Find R^{2}
b) Describe the geometric transformation represented by R^{2}
c) Hence describe the geometric transformation represented by R
d) Write down R^{8}
a) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
b) Rotation 90° anticlockwise about $(0,0)$
c) Rotation 45° anticlockwise about $(0,0)$
d) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
7.5) Linear transformations in three dimensions Chapter CONTENTS

Your turn

Find the matrix representing:

- reflection in the plane $x=0$

Find the matrix representing:

- reflection in the plane $z=0$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Your turn

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,2,3)$ under the transformation represented by \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,2,3)$ under the transformation represented by \mathbf{M}.
(a) Reflection in the plane $z=0$
(b) $(-1,2,-3)$

Your turn

Find the matrix representing:

- Rotation, angle θ, anticlockwise about the x-axis
- Rotation, angle θ, anticlockwise about the y-axis

Find the matrix representing:

- Rotation, angle θ, anticlockwise about the z-axis

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Your turn

Find the matrix representing:

- Rotation, angle 90°, anticlockwise about the x-axis
- Rotation, angle 180°, anticlockwise about the z-axis

Find the matrix representing:

- Rotation, angle 270°, anticlockwise about the y-axis

Worked example

Your turn

$$
\mathbf{M}=\left(\begin{array}{ccc}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates $(-1,-2,1)$ under the transformation represented by \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates
($-1,-2,1$) under the transformation represented by \mathbf{M}.
(a) Rotation 30° anticlockwise about the y-axis
(b) $\left(\frac{1-\sqrt{3}}{2},-2, \frac{1+\sqrt{3}}{2}\right)$
7.6) The inverse of a linear transformation Chapter CONTENTS

Your turn

The triangle T has vertices at A, B and C.
The matrix $M=\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)$ transforms T to the triangle T^{\prime} with vertices at $A^{\prime}(3,4), B^{\prime}(10,4)$ and $C^{\prime}(-3,-4)$. Determine the coordinates of A, B and C.

The triangle T has vertices at A, B and C. The matrix $M=$ $\left(\begin{array}{cc}4 & -1 \\ 3 & 1\end{array}\right)$ transforms T to the triangle T^{\prime} with vertices at $A^{\prime}(4,3), B^{\prime}(4,10)$ and $\mathrm{C}^{\prime}(-4,-3)$. Determine the coordinates of A, B and C.

$$
A(1,0) \quad B(2,4) \quad C(-1,0)
$$

Worked example

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
5 & -2 \\
4 & -3
\end{array}\right) \\
A & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

a) Find $\operatorname{det} M$
b) Describe fully the single geometrical transformation represented by A
c) The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B

Your turn

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
3 & 4 \\
2 & -5
\end{array}\right) \\
A & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

a) Find $\operatorname{det} M$
b) Describe fully the single geometrical transformation represented by A
c) The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B
a) -23
b) Rotation 90° anticlockwise about (0,0)
c) $\left(\begin{array}{cc}-4 & 3 \\ 5 & 2\end{array}\right)$

$$
M=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 3 & -1 \\
0 & 2 & -2
\end{array}\right)
$$

The point (a, b, c) is mapped onto $(-3,-2,1)$ under M. Find the values of a, b and c

The point (a, b, c) is mapped onto $(3,2,-1)$ under M. Find the values of a, b and c

$$
a=10, b=-6, c=-7
$$

Your turn

$$
R=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

a) Find R^{-1}
b) Explain this geometrically
c) Find R^{7999}
d) Find R^{8000}

