7) Linear transformations

7.1) Linear transformations in two dimensions

7.2) Reflections and rotations

7.3) Enlargements and stretches

7.4) Successive transformations

7.5) Linear transformations in three dimensions

7.6) The inverse of a linear transformation

7.1) Linear transformations in two dimensions Chapter CONTENTS

Worked example	Your turn
Find matrices to represent these linear transformations. a) $T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 3y - x \\ 2x \end{pmatrix}$	Find matrices to represent these linear transformations. a) $T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2y + x \\ 3x \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$
b) $V: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x+3y \end{pmatrix}$	b) $V: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -2y \\ 3x + y \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 3 & 1 \end{pmatrix}$

Worked example	Your turn
A rectangle R has vertices (2, 1), (4, 1), (4, 2) and (2, 2) Find the vertices of the image of R under the transformation given by the matrix $M = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$. Sketch R and its image, R' on a coordinate grid.	A square has vertices (1,1), (3,1), (3,3) and (1,3) Find the vertices of the image of <i>S</i> under the transformation given by the matrix $M = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$. Sketch <i>S</i> and the image of <i>S</i> on a coordinate grid. (1,3), (-1,7), (3,9), (5,5)

Worked example	Your turn
Determine if the point (2, 5) is invariant under the transformation given by the matrix: $\begin{pmatrix} 1 & 6 \\ 4 & 3 \end{pmatrix}$	Determine if the point (4, 6) is invariant under the transformation given by the matrix: $\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$ No
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	

Worked exa	ample	Your turn
Determine whether $\begin{pmatrix} 1\\ 3 \end{pmatrix}$ of invariant points	$\begin{pmatrix} 2\\ 4 \end{pmatrix}$ has any lines	Determine whether $\begin{pmatrix} 5 & -2 \\ 3 & -0.5 \end{pmatrix}$ has any lines of invariant points y = 2x

Worked example	Your turn
Show that the matrix $\begin{pmatrix} 2 & -5 \\ 4 & -3 \end{pmatrix}$ has no	Show that the matrix $\begin{pmatrix} 4 & -3 \\ 2 & -5 \end{pmatrix}$ has no
	$\begin{pmatrix} 4 & -3 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $4x - 3y = x \rightarrow y = x$ $2x - 5y = y \rightarrow y = \frac{1}{3}x$ $x = \frac{1}{3}x \rightarrow x = 0, y = 0$ $\therefore (0, 0) \text{ is the only invariant point}$

Worked example	Your turn
Worked exampleFind the invariant lines of thetransformation given by $\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$	Find the invariant lines of the transformation given by $\begin{pmatrix} 3 & 2 \\ 5 & 6 \end{pmatrix}$ $y = \frac{5}{2}x + c$
	y = -x

7.2) Reflections and rotations

Chapter CONTENTS

Worked example	Your turn
 Find a 2 × 2 matrix that represents: A reflection in the <i>y</i>-axis. 	Find a 2 × 2 matrix that represents: • A reflection in the <i>x</i> -axis. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
• A reflection in the line $y = x$	• A reflection in the line $y = -x$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

Worked example	Your turn
 Find a 2 × 2 matrix that represents: Rotation 90° anticlockwise about the origin 	Find a 2 × 2 matrix that represents: • Rotation 270° anticlockwise about the origin $ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $
 Rotation 180° about the origin 	

Worked example	Your turn
 Find a 2 × 2 matrix that represents: Rotation 90° anticlockwise about the origin 	Find a 2 × 2 matrix that represents: • Rotation 270° anticlockwise about the origin $ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $
 Rotation 180° about the origin 	

Worked example	Your turn
Describe fully the transformation $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	Describe fully the transformation $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
described by the matrix $\begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	described by the matrix $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$
	Rotation 45° anticlockwise about the origin

Worked example	Your turn
For these transformations, state any invariant lines/points: • reflection in the line $y = -x$	 For these transformations, state any invariant lines/points: reflection in the line y = x
	Invariant lines: y = x Any straight line with gradient -1 ($y = -x + k$)
	Invariant points: All points on those lines
 Rotation 90° anticlockwise about the origin 	 Rotation 180° about the origin
	Invariant lines: Any straight line through origin $(y = mx)$
	Invariant points: (0,0)

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

U is the single geometrical transformation represented by the matrix P.

Given that U maps the point with coordinates (a, b) onto the point with coordinates

(2a - 3, 1 - b), find the values of a and b

Your turn

$$P = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

U is the single geometrical transformation represented by the matrix *P*. Given that *U* maps the point with coordinates (a, b) onto the point with coordinates (3 + 2a, b + 1), find the values of *a* and *b*

$$a = -2, b = 1$$

7.3) Enlargements and stretches

Chapter CONTENTS

Worked example	Your turn
Describe the effect of the following matrices: $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	Describe the effect of the following matrices: $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$
	Stretch parallel to <i>x</i> -axis, scale factor 2 and Stretch parallel to <i>y</i> -axis, scale factor 3 (not an enlargement)
$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	
$\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$	

Worked example	Your turn
A triangle T has vertices $(1, 1)$, $(1, 2)$ and $(2, 2)$.	A triangle T has vertices $(1, 1)$, $(1, 2)$ and $(2, 2)$.
a) Find the vertices of the image of T under the transformation given by the matrix $M = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.	a) Find the vertices of the image of T under the transformation given by the matrix $M = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.
 b) Sketch T and its image, T' on a coordinate grid. c) Describe the geometric transformation. 	 b) Sketch T and its image, T' on a coordinate grid. c) Describe the geometric transformation.
	 a) (3, 2), (3,4) and (6, 4) b) Sketch c) The triangle has been stretched by a scale factor of 3 parallel to the <i>x</i>-axis and by a scale factor of 2 parallel to the <i>y</i>-axis

Worked example	Your turn
Shape B is transformed to shape C by the matrix	Shape R is transformed to shape S by the matrix
$A = \begin{pmatrix} 2 & -3 \\ -4 & 9 \end{pmatrix}.$ Given that the area of C is 72 square units, find the area of B	$A = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}.$ Given that the area of S is 72 square units, find the area of R 18

7.4) Successive transformations

Chapter CONTENTS

Worked example	Your turn
Represent as a single matrix the transformation representing a reflection in the line $y = x$ followed by a stretch parallel to the x-axis by a factor of 4.	Represent as a single matrix the transformation representing a reflection in the line $y = -x$ followed by a stretch parallel to the y-axis by a factor of 3.
	$\begin{pmatrix} 0 & -3 \\ -1 & 0 \end{pmatrix}$
Represent as a single matrix the transformation representing a rotation 90° anticlockwise about the point (0,0) followed by a reflection in the line x -axis. What single transformation is this?	Represent as a single matrix the transformation representing a rotation 270° anticlockwise about the point (0,0) followed by a reflection in the line <i>y</i> -axis. What single transformation is this?
	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ Reflection in the line $y = -x$

Worked example	Your turn
The matrix <i>R</i> is given by $R = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ a) Find R^3 b) Describe the geometric transformation represented by R^3 c) Hence describe the geometric transformation represented by <i>R</i> d) Write down R^{900}	The matrix <i>R</i> is given by $R = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ a) Find R^2 b) Describe the geometric transformation represented by R^2 c) Hence describe the geometric transformation represented by <i>R</i> d) Write down R^8 a) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ b) Rotation 90° anticlockwise about (0,0) c) Rotation 45° anticlockwise about (0,0) d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$

7.5) Linear transformations in three dimensions Chapter CONTENTS

Worked example	Your turn
Find the matrix representing: • reflection in the plane $x = 0$	Find the matrix representing: • reflection in the plane $z = 0$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
• reflection in the plane $y = 0$	

Worked example	Your turn
$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (a) Describe the transformation represented by M . (b) Find the image of the point with coordinates (-1, 2, 3) under the transformation represented by M .	$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ (a) Describe the transformation represented by M . (b) Find the image of the point with coordinates (-1, 2, 3) under the transformation represented by M .
	(a) Reflection in the plane $z = 0$ (b) $(-1, 2, -3)$

Worked example	Your turn
Find the matrix representing: • Rotation, angle θ , anticlockwise about the <i>x</i> -axis	Find the matrix representing: • Rotation, angle θ , anticlockwise about the <i>z</i> -axis $\begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$
• Rotation, angle θ , anticlockwise about the <i>y</i> -axis	

Worked example	Your turn
 Find the matrix representing: Rotation, angle 90°, anticlockwise about the <i>x</i>-axis 	Find the matrix representing: • Rotation, angle 270°, anticlockwise about the <i>y</i> -axis $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
• Rotation, angle 180°, anticlockwise about the z-axis	

Worked example

$$\mathbf{M} = \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(a) Describe the transformation represented by **M**.

(b) Find the image of the point with coordinates

(-1, -2, 1) under the transformation represented by **M**.

Your turn

$$\mathbf{M} = \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix}$$

(a) Describe the transformation represented by **M**. (b) Find the image of the point with coordinates (-1, -2, 1) under the transformation represented by **M**.

(a) Rotation 30° anticlockwise about the *y*-axis (b) $\left(\frac{1-\sqrt{3}}{2}, -2, \frac{1+\sqrt{3}}{2}\right)$

7.6) The inverse of a linear transformation Chapter CONTENTS

Worked example	Your turn
The triangle <i>T</i> has vertices at <i>A</i> , <i>B</i> and <i>C</i> . The matrix $M = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$ transforms <i>T</i> to the triangle <i>T'</i> with vertices at $A'(3, 4)$, $B'(10, 4)$ and $C'(-3, -4)$. Determine the coordinates of <i>A</i> , <i>B</i> and <i>C</i> .	The triangle <i>T</i> has vertices at <i>A</i> , <i>B</i> and <i>C</i> . The matrix $M = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix}$ transforms <i>T</i> to the triangle <i>T'</i> with vertices at $A'(4,3)$, $B'(4,10)$ and $C'(-4,-3)$. Determine the coordinates of <i>A</i> , <i>B</i> and <i>C</i> .
	A(1,0) B(2,4) C(-1,0)

	Worked example		Your turn
	$M = \begin{pmatrix} 5 & -2 \\ 4 & -3 \end{pmatrix}$		$M = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}$
a)	$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Find det M	a)	$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Find det M
b)	Describe fully the single geometrical transformation represented by A	b)	Describe fully the single geometrical transformation represented by A
c)	The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B	c)	The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M. Find B
		a) - b) I c) (-23 Rotation 90° anticlockwise about $(0, 0)$ $\begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$

Worked example	Your turn
$M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 3 & -1 \\ 0 & 2 & -2 \end{pmatrix}$ The point (a, b, c) is mapped onto $(-3, -2, 1)$ under M . Find the values of a, b and c	$M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -2 \\ 1 & 3 & -1 \end{pmatrix}$ The point (<i>a</i> , <i>b</i> , <i>c</i>) is mapped onto (3, 2, -1) under <i>M</i> . Find the values of <i>a</i> , <i>b</i> and <i>c</i> a = 10, b = -6, c = -7

Worked example	Your turn
$R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ a) Find R^{-1} b) Explain this geometrically c) Find R^{7999} d) Find R^{8000}	$R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ a) Find R^{-1} b) Explain this geometrically c) Find R^{8001} d) Find R^{8002}
	a) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ b) Reflection is self-inverse. The inverse of reflection in the line $y = -x$ is reflection in the line $y = -x$ again c) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$