Worked example

Your turn

A system of equations is shown below:

$$
\begin{aligned}
& 3 x-k y-6 z=k \\
& k x+3 y+3 z=2 \\
& -3 x-y+3 z=-2
\end{aligned}
$$

For each of the following values of k, determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the geometric configuration of the plane corresponding to each value of k.
(a) $k=0$
(b) $k=-6$

A system of equations is shown below:

$$
\begin{aligned}
& 3 x-k y-6 z=k \\
& k x+3 y+3 z=2 \\
& -3 x-y+3 z=-2
\end{aligned}
$$

For each of the following values of k, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the geometric configuration of the plane corresponding to each value of k.
(a) $k=1$
(a) $k=1:\left|\begin{array}{ccc}3 & -1 & -6 \\ 1 & 3 & 3 \\ -3 & -1 & 3\end{array}\right|=0$
$3 x-y-6 z=1$
$x+3 y+3 z=2$
$-3 x-y+3 z=-2$
(1) $+2 \times(2): \quad 5 x+5 y=5$
(2) - (3): $\quad 4 x+4 y=4$

Equations (4) and (5) are consistent so system is consistent and has an infinity of solutions. Planes meet at a sheaf

Worked example

Your turn

A system of equations is shown below:

$$
\begin{gathered}
x-r y-6 z=r \\
r x-4 y-12 z=s \\
-3 x+t y+18 z=u
\end{gathered}
$$

For each of the following values of r, s and t, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the corresponding geometric configuration.
(a) $r=2, s=5, t=4, u=1$
(b) $r=2, s=4, t=6, u=-6$

A system of equations is shown below:

$$
\begin{gathered}
x-r y-6 z=r \\
r x-4 y-12 z=s \\
-3 x+t y+18 z=u
\end{gathered}
$$

For each of the following values of r, s and t, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the corresponding geometric configuration.
(a) $r=2, s=4, t=6, u=-5$
(a) $\left|\begin{array}{ccc}1 & -2 & -6 \\ 2 & -4 & -12 \\ -3 & 6 & 18\end{array}\right|=0$

$$
\begin{align*}
x-2 y-6 z & =2 \tag{1}\\
2 x-4 y-12 z & =4 \tag{2}\\
-3 x+6 y+18 z & =-5 \tag{3}
\end{align*}
$$

All three planes are parallel and non-identical.
The system of equations is inconsistent and has no solutions.

