6.6) Solving systems of equations using matrices

Your turn

Solve the simultaneous equations:

$$
\begin{gathered}
6 x-y+2 z=6 \\
-x+2 y-6 z=3 \\
2 x-3 y-5 z=24
\end{gathered}
$$

Solve the simultaneous equations:

$$
\begin{gathered}
-x+6 y-2 z=21 \\
6 x-2 y-z=-16 \\
-2 x+3 y+5 z=24 \\
x=-1, y=4, z=2
\end{gathered}
$$

Worked example

Your turn

A llama farmer has three types of llama: woolly, classic and Suri. Initially his flock had 2810 llamas in it. There were 160 more woolly llamas than classic.
After one year:

- The number of woolly llamas had increased by 5%
- The number of classic llamas had increased by 3%
- The number of Suri llamas had decreased by 4%
- Overall the flock size had increased by 46

Form and solve a matrix equation to find out how many of each type of llama there were in the initial flock.

A colony of 1000 mole-rats is made up of adult males, adult females and youngsters. Originally there were 100 more adult females than adult males.
After one year:

- The number of adult males had increased by 2%
- The number of adult females had increased by 3%
- The number of youngsters had decreased by 4%
- The total number of mole-rats had decreased by 20

Form and solve a matrix equation to find out how many of each type of mole-rat were in the original colony.

100 adult males, 200 adult females, 700 youngsters in the original colony

Your turn

The system of equations is consistent and has a single solution. Determine the possible values of k.

$$
\begin{aligned}
& x-3 y-2 z=7 \\
& k x-y+3 z=11 \\
& x-y+z=13
\end{aligned}
$$

The system of equations is consistent and has a single solution. Determine the possible values of k.

$$
\begin{gathered}
2 x+3 y-z=13 \\
3 x-y+k z=11 \\
x+y+z=7 \\
\quad k \neq 15
\end{gathered}
$$

