Inverting a 3×3 Matrix

Example

Find the inverse of the matrix $\left(\begin{array}{ccc}2 & 2 & 0 \\ 1 & 4 & -2 \\ 2 & 1 & 1\end{array}\right)$

Using your Calculator

1. Mode \rightarrow Matrix.
2. Select MatA. This allows you to input your matrix, which will be saved in a special variable ' $M a t A$ '.
3. Select 3 rows/cols and input each number, pressing $=$ after each.
4. Press AC to start a calculation.
5. You want to write $M a t A^{-1}$. To get the $M a t A$ in your expression: OPTN for the matrix menu, then select MatA to insert it into your expression.
Use the special $\boldsymbol{x}^{\mathbf{- 1}}$ key on your calculator, because the general power button will not work in matrix mode.
6. Press $=$, and look appropriately smug.

Further Example

$\boldsymbol{A}=\left(\begin{array}{ccc}-2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right)$,
and the matrix \mathbf{B} is such that $(\mathbf{A B})^{-1}=\left(\begin{array}{ccc}8 & -17 & 9 \\ -5 & 10 & -6 \\ -3 & 5 & -4\end{array}\right)$.
(a) Show that $\mathbf{A}^{-1}=\mathbf{A}$.
(b) Find \boldsymbol{B}^{-1}.

Test Your Understanding

[June 2011 Q7] The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left(\begin{array}{rrr}
k & -1 & 1 \tag{2}\\
1 & 0 & -1 \\
3 & -2 & 1
\end{array}\right), \quad k \neq 1
$$

(a) Show that $\operatorname{det} \mathbf{M}=2-2 k$.
(b) Find \mathbf{M}^{-1}, in terms of k.

