6.4) Inverting a 2×2 matrix

Find the inverse matrix for:

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Find the inverse matrix for

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) \\
\frac{1}{2}\left(\begin{array}{ll}
-4 & 2 \\
-3 & 1
\end{array}\right) \text { or }\left(\begin{array}{ll}
-2 & 1 \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)
\end{gathered}
$$

Your turn

For what value of p is $\left(\begin{array}{cc}1 & 2-p \\ -4 & p+3\end{array}\right)$ singular?

For what value of p is $\left(\begin{array}{cc}4 & p+2 \\ -1 & 3-p\end{array}\right)$ singular?

$$
p=\frac{14}{3}
$$

Given p is not this value, find the inverse.

$$
\frac{1}{14-3 p}\left(\begin{array}{cc}
3-p & -(p+2) \\
1 & 4
\end{array}\right)
$$

If \mathbf{A} and \mathbf{B} are non-singular matrices, prove that $(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$

If \mathbf{P} and \mathbf{Q} are non-singular matrices, prove that $(\mathbf{P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$

$$
\begin{aligned}
\text { Let } C & =(P Q)^{-1} \\
(P Q) C & =(P Q)(P Q)^{-1} \\
(P Q) C & =I \\
P^{-1} P Q C & =P^{-1} I \\
I Q C & =P^{-1} \\
Q C & =P^{-1} \\
Q^{-1} Q C & =Q^{-1} P^{-1} \\
I C & =Q^{-1} P^{-1} \\
C & =Q^{-1} P^{-1} \\
(P Q)^{-1} & =Q^{-1} P^{-1}
\end{aligned}
$$

Your turn

If A and B are non-singular matrices such that $\mathbf{A B A}=\mathbf{I}$, prove that $\mathbf{B}=\mathbf{A}^{-1} \mathbf{A}^{\mathbf{1}}$

If A and B are non-singular matrices such that $\mathbf{B A B}=\mathbf{I}$, prove that $\mathbf{A}=\mathbf{B}^{-1} \mathbf{B}^{\mathbf{1}}$

$$
\begin{aligned}
B A B & =I \\
B^{-1} B A B & =B^{-1} I \\
I A B & =B^{-1} \\
A B & =B^{-1} \\
A B B^{-1} & =B^{-1} B^{-1} \\
A I & =B^{-1} B^{-1} \\
A & =B^{-1} B^{-1}
\end{aligned}
$$

