6.4) Inverting a 2 x 2 matrix

Your turn
Find the inverse matrix for $ \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} $ $ \frac{1}{2}\begin{pmatrix} -4 & 2 \\ -3 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} -2 & 1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} $

Worked example	Your turn
For what value of p is $\begin{pmatrix} 1 & 2-p \\ -4 & p+3 \end{pmatrix}$ singular?	For what value of p is $\begin{pmatrix} 4 & p+2 \\ -1 & 3-p \end{pmatrix}$ singular?
	$p = \frac{14}{3}$
Given <i>p</i> is not this value, find the inverse.	Given p is not this value, find the inverse. $\frac{1}{14-3p} \begin{pmatrix} 3-p & -(p+2) \\ 1 & 4 \end{pmatrix}$

Worked example	Your turn
If A and B are non-singular matrices, prove that $(AB)^{-1} = B^{-1}A^{-1}$	If P and Q are non-singular matrices, prove that $(\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$
	Let $C = (PQ)^{-1}$ $(PQ)C = (PQ)(PQ)^{-1}$ (PQ)C = I $P^{-1}PQC = P^{-1}I$ $IQC = P^{-1}$ $QC = P^{-1}$ $Q^{-1}QC = Q^{-1}P^{-1}$ $IC = Q^{-1}P^{-1}$ $C = Q^{-1}P^{-1}$ $(PQ)^{-1} = Q^{-1}P^{-1}$

Worked example	Your turn
If A and B are non-singular matrices such that $ABA = I$, prove that $B = A^{-1}A^{-1}$	If A and B are non-singular matrices such that $BAB = I$, prove that $A = B^{-1}B^{-1}$
	$BAB = I$ $B^{-1}BAB = B^{-1}I$ $IAB = B^{-1}$ $AB = B^{-1}$ $ABB^{-1} = B^{-1}B^{-1}$ $AI = B^{-1}B^{-1}$ $A = B^{-1}B^{-1}$