6.4) Differentiating hyperbolic functions

Your turn

Prove that $\frac{d}{d x}(\sinh x)=\cosh x$
Prove that $\frac{d}{d x}(\cosh x)=\sinh x$ Proof

Differentiate with respect to x : $\sinh 7 x$
$\cosh 6 x$
$\tanh 5 x$

Differentiate with respect to x :
$\sinh 2 x$
$2 \cosh 2 x$
$\cosh 3 x$
$3 \sinh 3 x$
$\tanh 4 x$
$4 \operatorname{sech}^{2} 4 x$

Your turn

Differentiate with respect to x :

 $x^{3} \sinh 5 x$Differentiate with respect to x : $x^{2} \cosh 4 x$
$2 x \cosh 4 x+4 x^{2} \sinh 4 x$

Worked example

$$
y=\frac{1}{2} \ln (\tanh x)
$$

Show that $\frac{d y}{d x}=\operatorname{cosech} 2 x$

Your turn

$$
y=\frac{1}{2} \ln (\operatorname{coth} x)
$$

Show that $\frac{d y}{d x}=-\operatorname{cosech} 2 x$ Shown

Worked example

Your turn

Prove that

$$
\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{x^{2}+1}}
$$

Prove that

$$
\begin{aligned}
& \frac{d}{d x}(\operatorname{arcosh} x)=\frac{1}{\sqrt{x^{2}-1}} \\
& y=\operatorname{arcosh} x \\
& x=\cosh y \\
& \frac{d x}{d y}=\sinh y \\
& \frac{d y}{d x}=\frac{1}{\sinh y} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{\cosh ^{2} y-1}} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}-1}}
\end{aligned}
$$

Differentiate with respect to x :

 $\operatorname{arsinh} 7 x$$\operatorname{arcosh} 6 x$
$\operatorname{artanh} 5 x$

Differentiate with respect to x :
$\operatorname{arcosh} 3 x$

$\operatorname{artanh} 4 x$

$$
\frac{4}{1-16 x^{2}}
$$

Given that $y=(\operatorname{arsinh} x)^{4}$ prove
Given that $y=(\operatorname{arcosh} x)^{2}$ prove that $\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}=4 y$ Proof

Your turn

(a) Show that $\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{1+x^{2}}}$
(b) Find the first two non-zero terms of the series expansion of $\operatorname{arsinh} x$.
The general form for the series expansion of $\operatorname{arsinh} x$ is given by

$$
\operatorname{arsinh} x=\sum_{r=0}^{\infty}\left(\frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}\right) \frac{x^{2 n+1}}{2 n+1}
$$

(c) Find, in simplest terms, the coefficient of x^{7}.
(d) Use your approximation up to and including the term in x^{7} to find an approximate value for arsinh 0.5.
(e) Calculate the percentage error in using this approximation.
(a) Show that $\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{1+x^{2}}}$
(b) Find the first two non-zero terms of the series expansion of $\operatorname{arsinh} x$.
The general form for the series expansion of $\operatorname{arsinh} x$ is given by

$$
\operatorname{arsinh} x=\sum_{r=0}^{\infty}\left(\frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}\right) \frac{x^{2 n+1}}{2 n+1}
$$

(c) Find, in simplest terms, the coefficient of x^{5}.
(d) Use your approximation up to and including the term in x^{5} to find an approximate value for arsinh 0.5.
(e) Calculate the percentage error in using this approximation.
(a) Shown
(b) $x-\frac{1}{6} x^{3}$
(c) $\frac{3}{40}$
(d) $0.48151 \ldots$
(e) $0.062 \% ~(3 \mathrm{d.p}$.

Your turn

Find the exact coordinates of the stationary point on the curve with equation $y=6 \cosh x-\sinh x$

Find the exact coordinates of the stationary point on the curve with equation $y=12 \cosh x-\sinh x$

$$
\left(\frac{1}{2} \ln \frac{13}{11}, \sqrt{143}\right)
$$

Your turn

Find the first three non-zero terms of the Maclaurin series for $\sinh x$ Hence find the percentage error when this approximation is used to evaluate $\sinh 0.4$

Find the first three non-zero terms of the
Maclaurin series for $\cosh x$
Hence find the percentage error when this approximation is used to evaluate cosh 0.2

$$
\begin{gathered}
1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \\
0.0000087 \%
\end{gathered}
$$

