6.4) Differentiating hyperbolic functions

Worked example	Your turn
Prove that $\frac{d}{dx}(\sinh x) = \cosh x$	Prove that $\frac{d}{dx}(\cosh x) = \sinh x$
	Proof

Worked example	Your turn
Differentiate with respect to <i>x</i> : sinh 7 <i>x</i>	Differentiate with respect to <i>x</i> : sinh 2 <i>x</i> 2 cosh 2 <i>x</i>
cosh 6 <i>x</i>	cosh 3 <i>x</i> <mark>3 sinh 3<i>x</i></mark>
tanh 5 <i>x</i>	tanh 4 <i>x</i> 4 sech ² 4 <i>x</i>

Worked example	Your turn
Differentiate with respect to <i>x</i> : <i>x</i> ³ sinh 5 <i>x</i>	Differentiate with respect to x: $x^2 \cosh 4x$ $2x \cosh 4x + 4x^2 \sinh 4x$

Worked example	Your turn
$y = \frac{1}{2} \ln(\tanh x)$ Show that $\frac{dy}{dx} = cosech 2x$	$y = \frac{1}{2}\ln(\coth x)$ Show that $\frac{dy}{dx} = -\cosh 2x$ Shown

Worked example	Your turn
Worked example Prove that $\frac{d}{dx}(\operatorname{arsinh} x) = \frac{1}{\sqrt{x^2 + 1}}$	Your turn Prove that $\frac{d}{dx}(\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}$ $y = \operatorname{arcosh} x$ $x = \cosh y$ $\frac{dx}{dy} = \sinh y$ $\frac{dy}{dx} = \frac{1}{\sinh y}$ $\frac{dy}{dx} = \frac{1}{\sinh y}$
	$\frac{dx}{dy} = \frac{\sqrt{\cosh^2 y} - 1}{\sqrt{x^2 - 1}}$

Worked example	Your turn
Differentiate with respect to <i>x</i> : <i>arsinh</i> 7 <i>x</i>	Differentiate with respect to x: arsinh 2x 2 $\sqrt{4x^2 + 1}$
arcosh 6x	$arcosh 3x$ 3 $\sqrt{9x^2 - 1}$
artanh 5x	$artanh 4x$ $\frac{4}{1-16x^2}$

Worked example	Your turn
Given that $y = (arsinh x)^4$ prove	Given that $y = (arcosh x)^2$ prove
that $(x^2 + 1) \left(\frac{dy}{dx}\right)^2 = 16y^{\frac{3}{2}}$	that $(x^2 - 1) \left(\frac{dy}{dx}\right)^2 = 4y$
	Proof

Worked example	Your turn
(a) Show that $\frac{d}{dx}(arsinh x) = \frac{1}{\sqrt{1+x^2}}$ (b) Find the first two non-zero terms of the series expansion of $arsinh x$. The general form for the series expansion of $arsinh x$ is given by $arsinh x = \sum_{r=0}^{\infty} \left(\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\right) \frac{x^{2n+1}}{2n+1}$ (c) Find, in simplest terms, the coefficient of x^7 . (d) Use your approximation up to and including the term in x^7 to find an approximate value for $arsinh 0.5$. (e) Calculate the percentage error in using this approximation.	(a) Show that $\frac{d}{dx}(arsinh x) = \frac{1}{\sqrt{1+x^2}}$ (b) Find the first two non-zero terms of the series expansion of $arsinh x$. The general form for the series expansion of $arsinh x$ is given by $arsinh x = \sum_{r=0}^{\infty} \left(\frac{(-1)^n (2n)!}{2^{2n} (n!)^2}\right) \frac{x^{2n+1}}{2n+1}$ (c) Find, in simplest terms, the coefficient of x^5 . (d) Use your approximation up to and including the term in x^5 to find an approximate value for $arsinh 0.5$. (e) Calculate the percentage error in using this approximation.
	(a) Shown (b) $x - \frac{1}{6}x^{3}$ (c) $\frac{3}{40}$ (d) 0.48151 (e) 0.062% (3 d.p.)

Worked example	Your turn
Find the exact coordinates of the stationary point on the curve with equation $y = 6 \cosh x - \sinh x$	Find the exact coordinates of the stationary point on the curve with equation $y = 12 \cosh x - \sinh x$
	$\left(\frac{1}{2}\ln\frac{13}{11},\sqrt{143}\right)$

Worked example	Your turn
Find the first three non-zero terms of the Maclaurin series for sinh x Hence find the percentage error when this approximation is used to evaluate sinh 0.4	Find the first three non-zero terms of the Maclaurin series for cosh <i>x</i> Hence find the percentage error when this approximation is used to evaluate cosh 0.2
	$1 + \frac{1}{2}x^2 + \frac{1}{24}x^4$ 0.0000087%