6.3) Identities and equations

Worked example	Your turn
Use definitions of sinh x and $\cosh x$ to prove that $sech^2 x = 1 - tanh^2 x$	Use definitions of $\sinh x$ and $\cosh x$ to prove that $\cosh^2 x - \sinh^2 x = 1$
	Proof

Worked example	Your turn
Use definitions of $\sinh x$ and $\cosh x$ to prove that: $\sinh (A + B) = \sinh A \cosh B + \cosh A \sinh B$	Use definitions of sinh x and $\cosh x$ to prove that: sinh $(A - B) = sinh A \cosh B - \cosh A \sinh B$
	Proof
cosh (A − B) = cosh A cosh B − sinh A sinh B	cosh (A + B) = cosh A cosh B + sinh A sinh B Proof

Worked example	Your turn
Use definitions of sinh x and $\cosh x$ to prove that $\cosh 2x = 1 + 2 \sinh^2 x$	Use definitions of sinh x and $\cosh x$ to prove that $\cosh 2x = 2 \cosh^2 x - 1$
	Proof

Worked example	Your turn
Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities: $\cos 2x = \cos^4 x - \sin^4 x$	Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities: $\cos 2x = \cos^2 x - \sin^2 x$ $\cosh 2x = \cosh^2 x + \sinh^2 x$

Worked example	Your turn
Given that $\sinh x = \frac{3}{5}$, find the exact value of: $\cosh x$	Given that $\sinh x = \frac{3}{4}$, find the exact value of: $\cosh x$ $\frac{5}{4}$
tanh x	tanh x 3 5
sinh 2 <i>x</i>	sinh 2 <i>x</i> <u>15</u> <u>8</u>

Worked example	Your turn
Solve for all real values of x : $6 \sinh x + 2 \cosh x = 7$	Solve for all real values of x: $6 \sinh x - 2 \cosh x = 7$ $x = \ln 4$

Worked example	Your turn
Solve for all real values of <i>x</i> : $2 \sinh^2 x - 5 \cosh x = 5$	Solve for all real values of x: $2 \cosh^{2} x - 5 \sinh x = 5$ $x = \ln \left(-\frac{1}{2} + \frac{\sqrt{5}}{2} \right)$ $x = \ln (3 + \sqrt{10})$

Worked example	Your turn
Solve for all real values of x : $\cosh 2x - 5 \sinh x + 2 = 0$	Solve for all real values of x: $ \cosh 2x - 5 \cosh x + 4 = 0 $ $ x = \ln\left(\frac{3\pm\sqrt{5}}{2}\right), x = 0 $

Worked example	Your turn
Solve the equation	Solve the equation
$4 \sinh 3x = 15 - 6e^{3x}$	$3 \sinh 2x = 13 - 3e^{2x}$
Give your answer in the form $\frac{1}{3} \ln k$, where k	Give your answer in the form $\frac{1}{2} \ln k$, where k
is an integer	is an integer
	$x = \frac{1}{2}\ln 3$

Worked example	Your turn
Express $5 \cosh x + 3 \sinh x$ in the form $R \cosh(x + \alpha)$, where $R > 0$. Give the value of α correct to 3 decimal places. Hence write down the minimum value of $10 \cosh x + 6 \sinh x$	Express $10 \cosh x + 6 \sinh x$ in the form $R \cosh(x + \alpha)$, where $R > 0$. Give the value of α correct to 3 decimal places. Hence write down the minimum value of $10 \cosh x + 6 \sinh x$
	$8 \cosh(x + 0.693)$ Minimum = 8