6C Determinants

Identity Matrices:
I_{2}
I_{3}

Determinants for a 2×2 Matrix

1. Given that $\boldsymbol{A}=\left[\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right]$, find $\operatorname{det} \boldsymbol{A}$
2. Given that \boldsymbol{A} is singular, find the value of p if ($\operatorname{singular}$ means $\operatorname{det} \mathbf{A}=0$)

$$
\boldsymbol{A}=\left[\begin{array}{cc}
4 & p+2 \\
-1 & 3-p
\end{array}\right]
$$

Determinants for a 3×3 Matrix
3. Find the minor of the element 2 in the matrix:
$\left[\begin{array}{ccc}5 & 0 & 2 \\ -1 & 8 & 1 \\ 6 & 7 & 3\end{array}\right]$
4. Find the value of $\left|\begin{array}{ccc}1 & 2 & 4 \\ 3 & 2 & 1 \\ -1 & 4 & 3\end{array}\right|$

Using a calculator to find determinants:
5. The matrix $A=\left[\begin{array}{ccc}3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3\end{array}\right]$, where k is a constant.
a) Find $\operatorname{det} \boldsymbol{A}$ in terms of k
b) Given that A is singular, find the possible values of k

