6.3) Determinants

Calculate the determinant then decide if the matrix has an inverse.

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -2 \\
-3 & -4
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -2 \\
-3 & 6
\end{array}\right)
\end{gathered}
$$

Calculate the determinant then decide if the matrix has an inverse.

$$
\left(\begin{array}{cc}
0 & -3 \\
-1 & -4 \\
-7 & \text { Yes }
\end{array}\right.
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
10 & -2 \\
5 & -1
\end{array}\right) \\
0 \mathrm{No}
\end{gathered}
$$

Your turn

$$
A=\left(\begin{array}{cc}
3 & p-1 \\
-2 & 4-p
\end{array}\right) \quad A=\left(\begin{array}{cc}
4 & p+2 \\
-1 & 3-p
\end{array}\right)
$$

Given that \mathbf{A} is singular, find the value of p.

Given that \mathbf{A} is singular, find the value of
p.

$$
p=\frac{14}{3}
$$

Your turn

$$
\left|\begin{array}{ccc}
3 & 1 & 4 \\
7 & 2 & 5 \\
-3 & 4 & 3
\end{array}\right|
$$

Find the minor of:
a) 2
b) -3
c) 7

Worked example

Your turn

Calculate the determinant:

$$
\left|\begin{array}{ccc}
2 & 1 & 0 \\
5 & 4 & -6 \\
8 & -1 & 2
\end{array}\right|
$$

Calculate the determinant:
$\left|\begin{array}{ccc}1 & 2 & 0 \\ 4 & 5 & -6 \\ -1 & 8 & 2\end{array}\right|$

Worked example

Your turn

$A=\left(\begin{array}{ccc}2 & 1 & -4 \\ 2 k+1 & 3 & k \\ 1 & 0 & 1\end{array}\right)$
where k is a constant.
Given that A is singular, find the possible values of k
$\boldsymbol{A}=\left(\begin{array}{ccc}3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3\end{array}\right)$
where k is a constant.
Given that A is singular, find the possible values of k

$$
k=-\frac{1}{2},-9
$$

