3. Matrix Multiplication

Examples

1. $\left(\begin{array}{cc}2 & -4 \\ 3 & 8\end{array}\right)\binom{4}{6}=$
2.

$\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 2 & 8 & 4 & 3 \\ 7 & -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}5 & 1 \\ 1 & 7 \\ 0 & 3 \\ 8 & -3\end{array}\right]=[\square]$

Matrix Multiplication Involving I:

1. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{3}{-1}$
2. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ccc}2 & 0 & -1 \\ 3 & 2 & 1\end{array}\right)$
3. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{2}$
4. $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)^{k}$
5. $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
6. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

When is Matrix Multiplication Valid?

Matrix multiplications are not always valid: the dimensions have to agree.

- For two matrices A and B, the matrix multiplication $A B$ is valid provided A has the same number of columns as B has rows.
- If we multiply an $\mathrm{n} \times \mathrm{m}$ matrix by an $\mathrm{m} \times \mathrm{k}$ matrix we generate an $\mathrm{n} \times \mathrm{k}$ matrix.
- Note that only square matrices (i.e. same width as height) can be raised to a power.

Properties of Matrix Operations

Properties of Addition

The basic properties of addition for real numbers also hold true for matrices.
Let A, B and C be $m \times n$ matrices
$A+B=B+A$ commutative
$A+(B+C)=(A+B)+C$ associative

Properties of Multiplication

Let A, B and C be matrices of dimensions such that the following are defined. Then
$A(B C)=(A B) C \quad$ associative
$A(B+C)=A B+A C \quad$ distributive
$(A+B) C=A C+B C \quad$ distributive
But $\mathrm{AB}=/=\mathrm{BA}$ non - commutative

