6.2) Inverse hyperbolic functions

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
Express as natural logarithms: arsinh 2	Express as natural logarithms: arsinh 1
	$\ln(1+\sqrt{2})$
arcosh 1	arcosh 2
	$\ln(2+\sqrt{3})$
artanh 3	$artanh\frac{1}{3}$
	$\ln\sqrt{2}$

Worked example	Your turn
Prove that $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}), x \ge 1$	Prove that $\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$
	y = arsinh x
	$x = \sinh y$ $x = \frac{e^y - e^{-y}}{2}$
	$e^{y} - e^{-y} = 2x^{2}$
	$e^{2y} - 2xe^y - 1 = 0$
	$e^{\mathcal{Y}} = \frac{-(-2x)\pm\sqrt{(-2x)^2 - 4(1)(-1)}}{2(1)}$
	$= x \pm \sqrt{x^2 + 1}$
	Since $\sqrt{x^2 + 1} > x$, we can only use the
	positive case as $e^{\gamma} > 0$
	$e^y = x + \sqrt{x^2 + 1}$
	$y = \ln(x + \sqrt{x^2 + 1})$
	$arsinh \ x = \ln(x + \sqrt{x^2 + 1})$

Worked example	Your turn
Worked example Given that $artanh \ x + artanh \ y = ln\sqrt{5}$, find an expression for y in terms of x	Your turnGiven that $artanh x + artanh y = ln\sqrt{3}$, prove that $y = \frac{2x-1}{x-2}$ Proof