6.2) Inverse hyperbolic functions

Your turn

Sketch the graphs of:

$$
y=\operatorname{arsinh} x
$$

$$
y=\operatorname{arcosh} x
$$

Sketch the graphs of:
$y=\operatorname{artanh} x$

Express as natural logarithms:
$\operatorname{arsinh} 2$
$\operatorname{arcosh} 1$
artanh 3

Express as natural logarithms:

$$
\operatorname{arsinh} 1
$$

$$
\ln (1+\sqrt{2})
$$

$\operatorname{arcosh} 2$
$\ln (2+\sqrt{3})$
$\operatorname{artanh} \frac{1}{3}$
$\ln \sqrt{2}$

Prove that $\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$

$$
\begin{aligned}
y & =\operatorname{arsinh} x \\
x & =\sinh y \\
x & =\frac{e^{y}-e^{-y}}{2} \\
e^{y}-e^{-y} & =2 x \\
e^{2 y}-2 x e^{y}-1 & =0 \\
e^{y} & =\frac{-(-2 x) \pm \sqrt{(-2 x)^{2}-4(1)(-1)}}{2(1)} \\
& =x \pm \sqrt{x^{2}+1}
\end{aligned}
$$

Since $\sqrt{x^{2}+1}>x$, we can only use the positive case as $e^{y}>0$

$$
\begin{gathered}
e^{y}=x+\sqrt{x^{2}+1} \\
y=\ln \left(x+\sqrt{x^{2}+1}\right) \\
\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)
\end{gathered}
$$

Given that $\operatorname{artanh} x+\operatorname{artanh} y=\ln \sqrt{5}$, Given that $\operatorname{artanh} x+\operatorname{artanh} y=\ln \sqrt{3}$, find an expression for y in terms of x prove that $y=\frac{2 x-1}{x-2}$

Proof

