6) Matrices

6.1)	Introduction to matrices
/	

6.2) Matrix multiplication

6.3) Determinants

6.4) Inverting a 2 x 2 matrix

6.5) Inverting a 3 x 3 matrix

6.6) Solving systems of equations using matrices

6.1) Introduction to matrices

Worked example	Your turn
Write down the size of the matrix: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	Write down the size of the matrix: $ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} $ $ 2 \times 3 $
$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$	(1 2) 1 × 2
$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$	
$\binom{1}{2}$	

Worked example	Your turn
Find (where possible): $ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -2 \\ -3 & -3 \end{pmatrix} $	Find (where possible): $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} + \begin{pmatrix} 0 & -2 & -3 \\ -4 & -4 & -6 \\ -7 & -8 & -8 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $
$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} - \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$ Not additively conformable
$\binom{1}{2} - \binom{-3}{4}$	

Worked example	Your turn
Find: $5\begin{pmatrix} 1 & 2\\ 3 & 4 \end{pmatrix}$	Find: $7\begin{pmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{pmatrix}$ $\begin{pmatrix} 7 & 14\\ 21 & 28\\ 25 & 42 \end{pmatrix}$
$-7\begin{pmatrix}1&2&3\\4&5&6\end{pmatrix}$	

Worked example	Your turn
Find the value of k: $\binom{-5}{3k} + k \binom{2k}{2k} = \binom{3k}{20}$	Find the value of k: $\binom{-3}{k} + k \binom{2k}{2k} = \binom{k}{6}$
	$k = \frac{3}{2}$

Worked example	Your turn
Write down the 2 × 2 identity matrix	Write down the 4 × 4 identity matrix $ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $
Write down the 3 × 3 identity matrix	

6.2) Matrix multiplication

Worked example					Your turn		
Determine the size of the matrix AB given the dimensions of A and B			De di	etermine the siz mensions of A a	e of the matrix . nd B	AB given the	
	Dimensions of A	Dimensions of B	Dimensions of AB (if valid)		Dimensions of A	Dimensions of B	Dimensions of AB (if valid)
	3 × 2	2 × 1			2×3	3 × 1	2 × 1
	3 × 2	2 × 4			1×4	1 × 4	Not valid
	3 × 2	4 × 2			1×4	4 × 1	1 × 1
	3 × 4	4 × 2			2 × 5	3 × 4	Not valid
	2 × 4	4 × 2			3 × 3	3 × 3	3 × 3
	2 × 4	2 × 4					
	2 × 2	2 × 4					
	2 × 2	2 × 2					

Worked example	Your turn
Find the product of these matrices where possible: $ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} $	Find the product of these matrices where possible: $ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} $
$ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix} $	$\begin{pmatrix} 27 & 30 & 33 \\ 61 & 68 & 75 \\ 95 & 106 & 117 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix}$	
$\begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$	

Worked example	Your turn
Find: $(4 5 6) \begin{pmatrix} 7\\ 8\\ 9 \end{pmatrix}$	Find: $(1 2 3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
	(14)
$\begin{pmatrix} 4\\5\\6 \end{pmatrix} (7 8 9)$	$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} (1 \ 2 \ 3) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} $

Worked example	Your turn
Find: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^2$	Find: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^4$
	$\begin{pmatrix} 199 & 290 \\ 435 & 634 \end{pmatrix}$
$(1 \ 2)^3$	
$\begin{pmatrix} 3 & 4 \end{pmatrix}$	

Worked example	Your turn
Find: $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^2$	Find: $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}^k$
	$\begin{pmatrix} 1 & 0 \\ ck & 1 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}^3$	

Worked example	Your turn
$A = \begin{pmatrix} 1 & a & 1 \\ -1 & 2 & 0 \\ b & 0 & 3 \end{pmatrix}$	$A = \begin{pmatrix} 1 & -1 & b \\ a & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$
Given that $A^2 = \begin{pmatrix} 6 & -9 & 4 \\ -3 & 7 & -1 \\ 8 & -6 & 11 \end{pmatrix}$, find the values of a and b	Given that $A^2 = \begin{pmatrix} -4 & -3 & -8 \\ 9 & 1 & -6 \\ 4 & -1 & 7 \end{pmatrix}$, find the values of a and b
	a = 3, b = -2

Worked example	Your turn
$A = \begin{pmatrix} -2 \\ a \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ b \end{pmatrix}$. Given that $BA = \begin{pmatrix} 0 \end{pmatrix}$ find AB in terms of a	$A = \begin{pmatrix} -1 \\ a \end{pmatrix}$ and $B = \begin{pmatrix} b & 2 \end{pmatrix}$. Given that $BA = \begin{pmatrix} 0 \end{pmatrix}$ find AB in terms of a
	$AB = \begin{pmatrix} -2a & -2\\ 2a^2 & 2a \end{pmatrix}$

Worked example	Your turn
Find: $ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	Find: $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $
$ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$	

6.3) Determinants

Worked example	Your turn
Calculate the determinant then decide if the matrix has an inverse. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	Calculate the determinant then decide if the matrix has an inverse. $\begin{pmatrix} 0 & -3 \\ -1 & -4 \end{pmatrix}$ -7 Yes
$\begin{pmatrix} 1 & -2 \\ -3 & -4 \end{pmatrix}$	$\begin{pmatrix} 10 & -2 \\ 5 & -1 \end{pmatrix}$ 0 No
$\begin{pmatrix} 1 & -2 \\ -3 & 6 \end{pmatrix}$	

Worked example	Your turn
$A = \begin{pmatrix} 3 & p-1 \\ -2 & 4-p \end{pmatrix}$ Given that A is singular, find the value of p .	$A = \begin{pmatrix} 4 & p+2 \\ -1 & 3-p \end{pmatrix}$ Given that A is singular, find the value of p . $p = \frac{14}{3}$

Worked example	Your turn
$\begin{vmatrix} 3 & 1 & 4 \\ 7 & 2 & 5 \\ -3 & 4 & 3 \end{vmatrix}$ Find the minor of:	$ \begin{pmatrix} 1 & 2 & 0 \\ 4 & 5 & -6 \\ -1 & 8 & 2 \end{pmatrix} $ Find the minor of:
a) 2	a) 5 $\begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = 2$
b) -3	b) o $\begin{vmatrix} 4 & 5 \\ -1 & 8 \end{vmatrix} = 37$
c) 7	c) -6 $\begin{vmatrix} 1 & 2 \\ -1 & 8 \end{vmatrix} = 10$

Worked example	Your turn
Calculate the determinant: $\begin{vmatrix} 2 & 1 & 0 \\ 5 & 4 & -6 \\ 8 & -1 & 2 \end{vmatrix}$	Calculate the determinant: 1 2 0 4 5 -6 -1 8 2 54

Worked example	Your turn
$A = \begin{pmatrix} 2 & 1 & -4 \\ 2k+1 & 3 & k \\ 1 & 0 & 1 \end{pmatrix}$	$A = \begin{pmatrix} 3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3 \end{pmatrix}$
where k is a constant.	where k is a constant.
Given that A is singular, find the possible	Given that A is singular, find the possible
values of k	values of k

$$k = -\frac{1}{2}, -9$$

6.4) Inverting a 2 x 2 matrix

Worked example	Your turn
Find the inverse matrix for: $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	Find the inverse matrix for $ \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} $
	$\frac{1}{2} \begin{pmatrix} -4 & 2 \\ -3 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} -2 & 1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$
$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	
$\begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$	

Worked example	Your turn
For what value of p is $\begin{pmatrix} 1 & 2-p \\ -4 & p+3 \end{pmatrix}$ singular?	For what value of p is $\begin{pmatrix} 4 & p+2 \\ -1 & 3-p \end{pmatrix}$ singular? $p = \frac{14}{3}$
Given <i>p</i> is not this value, find the inverse.	Given <i>p</i> is not this value, find the inverse. $\frac{1}{14-3p} \begin{pmatrix} 3-p & -(p+2) \\ 1 & 4 \end{pmatrix}$

Worked example	Your turn
If A and B are non-singular matrices, prove that $(AB)^{-1} = B^{-1}A^{-1}$	If P and Q are non-singular matrices, prove that $(\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$
	Let $C = (PQ)^{-1}$ $(PQ)C = (PQ)(PQ)^{-1}$ (PQ)C = I $P^{-1}PQC = P^{-1}I$ $IQC = P^{-1}$ $QC = P^{-1}$ $Q^{-1}QC = Q^{-1}P^{-1}$ $IC = Q^{-1}P^{-1}$ $C = Q^{-1}P^{-1}$ $(PQ)^{-1} = Q^{-1}P^{-1}$

Worked example	Your turn
If A and B are non-singular matrices such that $ABA = I$, prove that $B = A^{-1}A^{-1}$	If A and B are non-singular matrices such that $BAB = I$, prove that $A = B^{-1}B^{-1}$
	$BAB = I$ $B^{-1}BAB = B^{-1}I$ $IAB = B^{-1}$ $AB = B^{-1}$ $ABB^{-1} = B^{-1}B^{-1}$ $AI = B^{-1}B^{-1}$ $A = B^{-1}B^{-1}$

6.5) Inverting a 3 x 3 matrix

Worked example	Your turn
Worked example If $A = \begin{pmatrix} 0 & -3 & -2 \\ 1 & -4 & -2 \\ -3 & 4 & 1 \end{pmatrix}$, find A^{-1} .	Your turn If $A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 4 & 1 \\ 2 & -1 & 0 \end{pmatrix}$, find A^{-1} . $\begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ 8 & -7 & -4 \end{pmatrix}$

Worked example	Your turn
$A = \begin{pmatrix} 5 & -4 & 4 \\ 8 & -7 & 8 \\ 2 & -2 & 3 \end{pmatrix},$ Show that $A^{-1} = A$.	$A = \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix},$ Show that $A^{-1} = A$. $A^{2} = \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Worked example	Your turn
$A = \begin{pmatrix} 5 & -4 & 4 \\ 8 & -7 & 8 \\ 2 & -2 & 3 \end{pmatrix},$ The matrix B is such that $(AB)^{-1} = \begin{pmatrix} 2 & 5 & -3 \\ -4 & 1 & -8 \\ -1 & 0 & 11 \end{pmatrix}.$ Find B^{-1} .	$A = \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix},$ The matrix B is such that $(AB)^{-1} = \begin{pmatrix} 8 & -17 & 9 \\ -5 & 10 & -6 \\ -3 & 5 & -4 \end{pmatrix}.$ Find B^{-1} .
	$(AB)^{-1} = B^{-1}A^{-1}$ $(AB)^{-1}A = B^{-1}A^{-1}A$ $(AB)^{-1}A = B^{-1}$ $B^{-1} = \begin{pmatrix} 8 & -17 & 9 \\ -5 & 10 & -6 \\ -3 & 5 & -4 \end{pmatrix} \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ $= \begin{pmatrix} -7 & -2 & -6 \\ 4 & 1 & 3 \\ 2 & 0 & 1 \end{pmatrix}$

Worked example

$A = \begin{pmatrix} k & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -2 & 3 \end{pmatrix}, k \neq -1$

Find the inverse matrix of A in terms of k

$$A = \begin{pmatrix} k & -1 & 1 \\ 1 & 0 & -1 \\ 3 & -2 & 1 \end{pmatrix}, k \neq 1$$

Find the inverse matrix of A in terms of k

$$A^{-1} = \frac{1}{2 - 2k} \begin{pmatrix} -2 & -1 & 1\\ -4 & k - 3 & k + 1\\ -2 & 2k - 3 & 1 \end{pmatrix}$$

Worked example	Your turn
Find the inverse of the matrix using elementary row operations $\begin{pmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$	Find the inverse of the matrix using elementary row operations $\begin{pmatrix} 1 & 0 & -3 \\ 2 & -2 & 1 \\ 0 & -1 & 3 \end{pmatrix}$ $\begin{pmatrix} -5 & 3 & -6 \\ -6 & 3 & -7 \\ -2 & 1 & -2 \end{pmatrix}$

6.6) Solving systems of equations using matrices Chapter CONTENTS

Worked example	Your turn
Worked example Solve the simultaneous equations: 6x - y + 2z = 6 $-x + 2y - 6z = 3$ $2x - 3y - 5z = 24$	Your turn Solve the simultaneous equations: -x + 6y - 2z = 21 $6x - 2y - z = -16$ $-2x + 3y + 5z = 24$ $x = -1, y = 4, z = 2$

Worked example	Your turn
 A llama farmer has three types of llama: woolly, classic and Suri. Initially his flock had 2810 llamas in it. There were 160 more woolly llamas than classic. After one year: The number of woolly llamas had increased by 5% The number of classic llamas had increased by 3% The number of Suri llamas had decreased by 4% Overall the flock size had increased by 46 	 A colony of 1000 mole-rats is made up of adult males, adult females and youngsters. Originally there were 100 more adult females than adult males. After one year: The number of adult males had increased by 2% The number of adult females had increased by 3% The number of youngsters had decreased by 4% The total number of mole-rats had decreased by 20
Form and solve a matrix equation to find out how many of each type of llama there were in the initial flock.	Form and solve a matrix equation to find out how many of each type of mole-rat were in the original colony. 100 adult males, 200 adult females, 700 youngsters in the original colony

Worked example	Your turn
The system of equations is consistent and has a single solution. Determine the possible values of k. $\begin{array}{l} x - 3y - 2z = 7 \\ kx - y + 3z = 11 \\ x - y + z = 13 \end{array}$	The system of equations is consistent and has a single solution. Determine the possible values of k. 2x + 3y - z = 13 3x - y + kz = 11 x + y + z = 7 $k \neq 15$

Worked example Your turn A system of equations is shown below: 3x - ky - 6z = kkx + 3y + 3z = 2-3x - y + 3z = -2For each of the following values of k, determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions.

In each case, identify the geometric configuration of the plane corresponding to each value of k.

(a) k = 0

(b) k = -6

A system of equations is shown below:

$$3x - ky - 6z = k$$
$$kx + 3y + 3z = 2$$
$$-3x - y + 3z = -2$$

For each of the following values of k, determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions. In each case, identify the geometric configuration of the plane corresponding to each value of k.

(a) k = 1

(a)
$$k = 1$$
: $\begin{vmatrix} 3 & -1 & -6 \\ 1 & 3 & 3 \\ -3 & -1 & 3 \end{vmatrix} = 0$
 $3x - y - 6z = 1$ (1)
 $x + 3y + 3z = 2$ (2)
 $-3x - y + 3z = -2$ (3)
(1) $+ 2 \times (2)$: $5x + 5y = 5$ (4)
(2) $-(3)$: $4x + 4y = 4$ (5)
Equations (4) and (5) are consistent so system is

consistent and has an infinity of solutions. Planes meet at a sheaf

Worked example	Your turn
A system of equations is shown below: x - ry - 6z = r $rx - 4y - 12z = s$ $-3x + ty + 18z = u$ For each of the following values of <i>r</i> , <i>s</i> and <i>t</i> , determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions. In each case, identify the corresponding geometric configuration. (a) $r = 2$, $s = 5$, $t = 4$, $u = 1$ (b) $r = 2$, $s = 4$, $t = 6$, $u = -6$	A system of equations is shown below: x - ry - 6z = r $rx - 4y - 12z = s$ $-3x + ty + 18z = u$ For each of the following values of <i>r</i> , <i>s</i> and <i>t</i> , determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions. In each case, identify the corresponding geometric configuration. (a) $r = 2, s = 4, t = 6, u = -5$ (a) $\begin{vmatrix} 1 & -2 & -6 \\ 2 & -4 & -12 \\ -3 & 6 & 18 \end{vmatrix} = 0$ x - 2y - 6z = 2 (1) 2x - 4y - 12z = 4 (2) -3x + 6y + 18z = -5 (3) All three planes are parallel and non-identical. The system of equations is inconsistent and has no solutions.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions. In each case, identify the corresponding geometric configuration. (a) $r = 2$, $s = 5$, $t = 4$, $u = 1$ (b) $r = 2$, $s = 4$, $t = 6$, $u = -6$	If the system is consistent, determine whether there is a unique solution or an infinity of solutions. In each case, identify the corresponding geometric configuration. (a) $r = 2, s = 4, t = 6, u = -5$ (a) $\begin{vmatrix} 1 & -2 & -6 \\ 2 & -4 & -12 \\ -3 & 6 & 18 \end{vmatrix} = 0$ x - 2y - 6z = 2 (1) 2x - 4y - 12z = 4 (2) -3x + 6y + 18z = -5 (3) All three planes are parallel and non-identical. The system of equations is inconsistent and has no solutions.