6) Matrices

6.1) Introduction to matrices
6.2) Matrix multiplication
6.3) Determinants
6.4) Inverting a 2×2 matrix
6.5) Inverting a 3×3 matrix
6.6) Solving systems of equations using matrices

Your turn

Write down the size of the matrix:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$
Write down the size of the matrix:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$
2×3
$\left(\begin{array}{ll}1 & 2\end{array}\right)$
1×2

Your turn

Find (where possible):

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{cc}
0 & -2 \\
-3 & -3
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\end{aligned}
$$

Find (where possible):

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)+\left(\begin{array}{ccc}
0 & -2 & -3 \\
-4 & -4 & -6 \\
-7 & -8 & -8
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)-\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right) \\
\text { Not additively conformable }
\end{gathered}
$$

Your turn

Find:
Find:

$$
\begin{aligned}
& 7\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) \\
& \left(\begin{array}{cc}
7 & 14 \\
21 & 28 \\
25 & 42
\end{array}\right)
\end{aligned}
$$

Find the value of k :

$$
\binom{-5}{3 k}+k\binom{2 k}{2 k}=\binom{3 k}{20}
$$

Find the value of k :

$$
\begin{gathered}
\binom{-3}{k}+k\binom{2 k}{2 k}=\binom{k}{6} \\
k=\frac{3}{2}
\end{gathered}
$$

Your turn

Write down the 2×2 identity matrix

Write down the 3×3 identity matrix
Write down the 4×4 identity matrix
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

6.2) Matrix multiplication

Worked example

Your turn

Determine the size of the matrix $A B$ given the dimensions of A and B

Dimensions of A	Dimensions of B	Dimensions of AB (if valid)
3×2	2×1	
3×2	2×4	
3×2	4×2	
3×4	4×2	
2×4	4×2	
2×4	2×4	
2×2	2×4	
2×2	2×2	

Determine the size of the matrix $A B$ given the dimensions of A and B

Dimensions of A	Dimensions of B	Dimensions of $A B$ (if valid)
2×3	3×1	2×1
1×4	1×4	Not valid
1×4	4×1	1×1
2×5	3×4	Not valid
3×3	3×3	3×3

Your turn

Find the product of these matrices where possible:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)\left(\begin{array}{cc}
7 & 8 \\
9 & 10
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{cc}
7 & 8 \\
9 & 10
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
7 & 8 \\
9 & 10
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Find the product of these matrices where possible:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)\left(\begin{array}{ccc}
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right) \\
& \left(\begin{array}{ccc}
27 & 30 & 33 \\
61 & 68 & 75 \\
95 & 106 & 117
\end{array}\right)
\end{aligned}
$$

Your turn

Find:

$$
\left(\begin{array}{lll}
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)
$$

$$
\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)\left(\begin{array}{lll}
7 & 8 & 9
\end{array}\right)
$$

Find:

$$
\begin{gather*}
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \tag{14}\\
(14)
\end{gather*} \begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right)
\end{aligned}
$$

Your turn

Find:
Find:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{2}$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{3}
$$

Your turn

Find:
$\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)^{2}$

$$
\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)^{3}
$$

Find:
$\left(\begin{array}{ll}1 & 0 \\ C & 1\end{array}\right)^{k}$
$\left(\begin{array}{cc}1 & 0 \\ c k & 1\end{array}\right)$

$$
A=\left(\begin{array}{ccc}
1 & a & 1 \\
-1 & 2 & 0 \\
b & 0 & 3
\end{array}\right)
$$

Given that $A^{2}=\left(\begin{array}{ccc}6 & -9 & 4 \\ -3 & 7 & -1 \\ 8 & -6 & 11\end{array}\right)$, find the values
of a and b
$A=\binom{-2}{a}$ and $B=\left(\begin{array}{ll}1 & b\end{array}\right)$. Given that $B A=(0)$ find $A B$ in terms of a
$A=\binom{-1}{a}$ and $B=\left(\begin{array}{ll}b & 2\end{array}\right)$. Given that $B A=(0)$ find $A B$ in terms of a

$$
A B=\left(\begin{array}{cc}
-2 a & -2 \\
2 a^{2} & 2 a
\end{array}\right)
$$

Find:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
\end{gathered}
$$

6.3) Determinants

Calculate the determinant then decide if the matrix has an inverse.

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -2 \\
-3 & -4
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -2 \\
-3 & 6
\end{array}\right)
\end{gathered}
$$

Calculate the determinant then decide if the matrix has an inverse.

$$
\left(\begin{array}{cc}
0 & -3 \\
-1 & -4 \\
-7 & \text { Yes }
\end{array}\right.
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
10 & -2 \\
5 & -1
\end{array}\right) \\
0 \mathrm{No}
\end{gathered}
$$

Your turn

$$
A=\left(\begin{array}{cc}
3 & p-1 \\
-2 & 4-p
\end{array}\right) \quad A=\left(\begin{array}{cc}
4 & p+2 \\
-1 & 3-p
\end{array}\right)
$$

Given that \mathbf{A} is singular, find the value of p.

Given that \mathbf{A} is singular, find the value of
p.

$$
p=\frac{14}{3}
$$

Your turn

$$
\left|\begin{array}{ccc}
3 & 1 & 4 \\
7 & 2 & 5 \\
-3 & 4 & 3
\end{array}\right|
$$

Find the minor of:
a) 2
b) -3
c) 7

Worked example

Your turn

Calculate the determinant:

$$
\left|\begin{array}{ccc}
2 & 1 & 0 \\
5 & 4 & -6 \\
8 & -1 & 2
\end{array}\right|
$$

Calculate the determinant:
$\left|\begin{array}{ccc}1 & 2 & 0 \\ 4 & 5 & -6 \\ -1 & 8 & 2\end{array}\right|$

Worked example

Your turn

$A=\left(\begin{array}{ccc}2 & 1 & -4 \\ 2 k+1 & 3 & k \\ 1 & 0 & 1\end{array}\right)$
where k is a constant.
Given that A is singular, find the possible values of k
$\boldsymbol{A}=\left(\begin{array}{ccc}3 & k & 0 \\ -2 & 1 & 2 \\ 5 & 0 & k+3\end{array}\right)$
where k is a constant.
Given that A is singular, find the possible values of k

$$
k=-\frac{1}{2},-9
$$

Find the inverse matrix for:

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Find the inverse matrix for

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) \\
\frac{1}{2}\left(\begin{array}{ll}
-4 & 2 \\
-3 & 1
\end{array}\right) \text { or }\left(\begin{array}{ll}
-2 & 1 \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right)
\end{gathered}
$$

Your turn

For what value of p is $\left(\begin{array}{cc}1 & 2-p \\ -4 & p+3\end{array}\right)$ singular?

For what value of p is $\left(\begin{array}{cc}4 & p+2 \\ -1 & 3-p\end{array}\right)$ singular?

$$
p=\frac{14}{3}
$$

Given p is not this value, find the inverse.

$$
\frac{1}{14-3 p}\left(\begin{array}{cc}
3-p & -(p+2) \\
1 & 4
\end{array}\right)
$$

If \mathbf{A} and \mathbf{B} are non-singular matrices, prove that $(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$

If \mathbf{P} and \mathbf{Q} are non-singular matrices, prove that $(\mathbf{P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$

$$
\begin{aligned}
\text { Let } C & =(P Q)^{-1} \\
(P Q) C & =(P Q)(P Q)^{-1} \\
(P Q) C & =I \\
P^{-1} P Q C & =P^{-1} I \\
I Q C & =P^{-1} \\
Q C & =P^{-1} \\
Q^{-1} Q C & =Q^{-1} P^{-1} \\
I C & =Q^{-1} P^{-1} \\
C & =Q^{-1} P^{-1} \\
(P Q)^{-1} & =Q^{-1} P^{-1}
\end{aligned}
$$

Your turn

If A and B are non-singular matrices such that $\mathbf{A B A}=\mathbf{I}$, prove that $\mathbf{B}=\mathbf{A}^{-1} \mathbf{A}^{\mathbf{1}}$

If A and B are non-singular matrices such that $\mathbf{B A B}=\mathbf{I}$, prove that $\mathbf{A}=\mathbf{B}^{-1} \mathbf{B}^{\mathbf{1}}$

$$
\begin{aligned}
B A B & =I \\
B^{-1} B A B & =B^{-1} I \\
I A B & =B^{-1} \\
A B & =B^{-1} \\
A B B^{-1} & =B^{-1} B^{-1} \\
A I & =B^{-1} B^{-1} \\
A & =B^{-1} B^{-1}
\end{aligned}
$$

Your turn

If $\boldsymbol{A}=\left(\begin{array}{ccc}0 & -3 & -2 \\ 1 & -4 & -2 \\ -3 & 4 & 1\end{array}\right)$, find \boldsymbol{A}^{-1}.

$$
\text { If } \boldsymbol{A}=\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & 4 & 1 \\
2 & -1 & 0
\end{array}\right) \text {, find } \boldsymbol{A}^{-1} .
$$

Worked example

Your turn

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccc}
5 & -4 & 4 \\
8 & -7 & 8 \\
2 & -2 & 3
\end{array}\right) \\
& \text { Show that } \mathbf{A}^{-1}=\mathbf{A} .
\end{aligned}
$$

$A=\left(\begin{array}{lll}5 & -4 & 4 \\ 8 & -7 & 8 \\ 2 & -2 & 3\end{array}\right)$
The matrix \mathbf{B} is such that $(\mathbf{A B})^{-1}=$
$\left(\begin{array}{ccc}2 & 5 & -3 \\ -4 & 1 & -8 \\ -1 & 0 & 11\end{array}\right)$.
Find B^{-1}.

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
k & 1 & -1 \\
-1 & 0 & 1 \\
1 & -2 & 3
\end{array}\right), k \neq-1 \quad \boldsymbol{A}=\left(\begin{array}{ccc}
k & -1 & 1 \\
1 & 0 & -1 \\
3 & -2 & 1
\end{array}\right), k \neq 1
$$

Find the inverse matrix of A in terms of k Find the inverse matrix of A in terms of k

$$
A^{-1}=\frac{1}{2-2 k}\left(\begin{array}{ccc}
-2 & -1 & 1 \\
-4 & k-3 & k+1 \\
-2 & 2 k-3 & 1
\end{array}\right)
$$

Your turn

Find the inverse of the matrix using elementary row operations

$$
\left(\begin{array}{ccc}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right)
$$

Find the inverse of the matrix using elementary row operations

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & -3 \\
2 & -2 & 1 \\
0 & -1 & 3
\end{array}\right) \\
& \left(\begin{array}{ccc}
-5 & 3 & -6 \\
-6 & 3 & -7 \\
-2 & 1 & -2
\end{array}\right)
\end{aligned}
$$

6.6) Solving systems of equations using matrices Chapter CONTENTS

Your turn

Solve the simultaneous equations:

$$
\begin{gathered}
6 x-y+2 z=6 \\
-x+2 y-6 z=3 \\
2 x-3 y-5 z=24
\end{gathered}
$$

Solve the simultaneous equations:

$$
\begin{gathered}
-x+6 y-2 z=21 \\
6 x-2 y-z=-16 \\
-2 x+3 y+5 z=24 \\
x=-1, y=4, z=2
\end{gathered}
$$

Worked example

Your turn

A llama farmer has three types of llama: woolly, classic and Suri. Initially his flock had 2810 llamas in it. There were 160 more woolly llamas than classic.
After one year:

- The number of woolly llamas had increased by 5%
- The number of classic llamas had increased by 3%
- The number of Suri llamas had decreased by 4%
- Overall the flock size had increased by 46

Form and solve a matrix equation to find out how many of each type of llama there were in the initial flock.

A colony of 1000 mole-rats is made up of adult males, adult females and youngsters. Originally there were 100 more adult females than adult males.
After one year:

- The number of adult males had increased by 2%
- The number of adult females had increased by 3%
- The number of youngsters had decreased by 4%
- The total number of mole-rats had decreased by 20

Form and solve a matrix equation to find out how many of each type of mole-rat were in the original colony.

100 adult males, 200 adult females, 700 youngsters in the original colony

Your turn

The system of equations is consistent and has a single solution. Determine the possible values of k.

$$
\begin{aligned}
& x-3 y-2 z=7 \\
& k x-y+3 z=11 \\
& x-y+z=13
\end{aligned}
$$

The system of equations is consistent and has a single solution. Determine the possible values of k.

$$
\begin{gathered}
2 x+3 y-z=13 \\
3 x-y+k z=11 \\
x+y+z=7 \\
\quad k \neq 15
\end{gathered}
$$

Worked example

Your turn

A system of equations is shown below:

$$
\begin{aligned}
& 3 x-k y-6 z=k \\
& k x+3 y+3 z=2 \\
& -3 x-y+3 z=-2
\end{aligned}
$$

For each of the following values of k, determine whether the system of equations is consistent or inconsistent. If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the geometric configuration of the plane corresponding to each value of k.
(a) $k=0$
(b) $k=-6$

A system of equations is shown below:

$$
\begin{aligned}
& 3 x-k y-6 z=k \\
& k x+3 y+3 z=2 \\
& -3 x-y+3 z=-2
\end{aligned}
$$

For each of the following values of k, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the geometric configuration of the plane corresponding to each value of k.
(a) $k=1$
(a) $k=1:\left|\begin{array}{ccc}3 & -1 & -6 \\ 1 & 3 & 3 \\ -3 & -1 & 3\end{array}\right|=0$
$3 x-y-6 z=1$
$x+3 y+3 z=2$
$-3 x-y+3 z=-2$
(1) $+2 \times(2): \quad 5 x+5 y=5$
(2) - (3): $\quad 4 x+4 y=4$

Equations (4) and (5) are consistent so system is consistent and has an infinity of solutions. Planes meet at a sheaf

Worked example

Your turn

A system of equations is shown below:

$$
\begin{gathered}
x-r y-6 z=r \\
r x-4 y-12 z=s \\
-3 x+t y+18 z=u
\end{gathered}
$$

For each of the following values of r, s and t, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the corresponding geometric configuration.
(a) $r=2, s=5, t=4, u=1$
(b) $r=2, s=4, t=6, u=-6$

A system of equations is shown below:

$$
\begin{gathered}
x-r y-6 z=r \\
r x-4 y-12 z=s \\
-3 x+t y+18 z=u
\end{gathered}
$$

For each of the following values of r, s and t, determine whether the system of equations is consistent or inconsistent.
If the system is consistent, determine whether there is a unique solution or an infinity of solutions.
In each case, identify the corresponding geometric configuration.
(a) $r=2, s=4, t=6, u=-5$
(a) $\left|\begin{array}{ccc}1 & -2 & -6 \\ 2 & -4 & -12 \\ -3 & 6 & 18\end{array}\right|=0$

$$
\begin{align*}
x-2 y-6 z & =2 \tag{1}\\
2 x-4 y-12 z & =4 \tag{2}\\
-3 x+6 y+18 z & =-5 \tag{3}
\end{align*}
$$

All three planes are parallel and non-identical.
The system of equations is inconsistent and has no solutions.

