6) Hyperbolic functions

- 6.1) Introduction to hyperbolic functions
- 6.2) Inverse hyperbolic functions
- 6.3) Identities and equations
- 6.4) Differentiating hyperbolic functions
- 6.5) Integrating hyperbolic functions

6.1) Introduction to hyperbolic functions Chapter CONTENTS

Worked example	Your turn
$\sinh x = \frac{e^x - e^{-x}}{2}$	$\cosh x = \frac{e^x + e^{-x}}{2}$
cosech x =	$sech \ x = \frac{2}{e^{x} + e^{-x}}$

Worked example	Your turn
Find to 2 decimal places, the values of: sinh 2	Find to 2 decimal places, the values of: sinh 3
	10.02
cosh 0	cosh 1
	1.54
tanh 1.8	tanh 0.8
	0.66

Worked example	Your turn
Find the exact values of: sinh (ln 3)	Find the exact values of: sinh (ln 2) 3 4
cosh (ln 2)	cosh (ln 3) 5 3
tanh(ln 5)	tanh(ln 4) 15 17

Worked example	Your turn
Find, to two decimal places, the value of x for which	Find, to two decimal places, the value of x for which $x = 5$
$\cosh x = 3$	sinh x = 5 $ x = 2.31$

Worked example	Your turn
Sketch the graph of $y = \sinh x$ by using	Sketch the graph of $y = \cosh x$, $x \in \mathbb{R}$
the exponential definition and state the	by using the exponential definition and
range	state the range

Worked example	Your turn
By using the graph of $y = \sinh x$, sketch the graph of $y = cosech x$	By using the graph of $y = \cosh x$, Sketch the graph of $y = \operatorname{sech} x$

Worked example	Your turn
On the same diagram sketch the graphs	On the same diagram sketch the graphs
of $y = \sinh 2x$ and $y = 2 \sinh x$	of $y = \cosh 4x$ and $y = 4 \cosh x$

6.2) Inverse hyperbolic functions

Chapter CONTENTS

Worked example	Your turn
Express as natural logarithms: arsinh 2	Express as natural logarithms: $arsinh \ 1$ $\ln(1 + \sqrt{2})$
arcosh 1	arcosh 2 $\ln(2 + \sqrt{3})$
artanh 3	$artanh\frac{1}{3}$ $\ln\sqrt{2}$

Worked example	Your turn
Prove that $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}), x \ge 1$	Prove that $arsinh x = \ln(x + \sqrt{x^2 + 1})$
	$y = \operatorname{arsinh} x$ $x = \sinh y$ $x = \frac{e^{y} - e^{-y}}{2}$ $e^{y} - e^{-y} = 2x$ $e^{2y} - 2xe^{y} - 1 = 0$ $e^{y} = \frac{-(-2x) \pm \sqrt{(-2x)^{2} - 4(1)(-1)}}{2(1)}$ $= x \pm \sqrt{x^{2} + 1}$ Since $\sqrt{x^{2} + 1} > x$, we can only use the positive case as $e^{y} > 0$ $e^{y} = x + \sqrt{x^{2} + 1}$ $y = \ln(x + \sqrt{x^{2} + 1})$ $\operatorname{arsinh} x = \ln(x + \sqrt{x^{2} + 1})$

Worked example	Your turn
Given that $artanh x + artanh y = ln\sqrt{5}$, find an expression for y in terms of x	Given that $artanh x + artanh y = ln\sqrt{3}$, prove that $y = \frac{2x-1}{x-2}$
	Proof

6.3) Identities and equations

Chapter CONTENTS

Worked example	Your turn
Use definitions of sinh x and $\cosh x$ to prove that $sech^2 x = 1 - tanh^2 x$	Use definitions of $\sinh x$ and $\cosh x$ to prove that $\cosh^2 x - \sinh^2 x = 1$
	Proof

Worked example	Your turn
Use definitions of $\sinh x$ and $\cosh x$ to prove that: $\sinh (A + B) = \sinh A \cosh B + \cosh A \sinh B$	Use definitions of sinh x and $\cosh x$ to prove that: sinh $(A - B) = sinh A \cosh B - \cosh A \sinh B$
	Proof
cosh (A − B) = cosh A cosh B − sinh A sinh B	cosh (A + B) = cosh A cosh B + sinh A sinh B Proof

Worked example	Your turn
Use definitions of $\sinh x$ and $\cosh x$ to prove that $\cosh 2x = 1 + 2 \sinh^2 x$	Use definitions of sinh x and $\cosh x$ to prove that $\cosh 2x = 2 \cosh^2 x - 1$
	Proof

Worked example	Your turn
Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities: $\cos 2x = \cos^4 x - \sin^4 x$	Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities: $\cos 2x = \cos^2 x - \sin^2 x$ $\cosh 2x = \cosh^2 x + \sinh^2 x$

Worked example	Your turn
Given that $\sinh x = \frac{3}{5}$, find the exact value of: $\cosh x$	Given that $\sinh x = \frac{3}{4}$, find the exact value of: $\cosh x$ $\frac{5}{4}$
tanh x	tanh x 3 5
sinh 2 <i>x</i>	sinh 2 <i>x</i> <u>15</u> <u>8</u>

Worked example	Your turn
Solve for all real values of x : $6 \sinh x + 2 \cosh x = 7$	Solve for all real values of x: $6 \sinh x - 2 \cosh x = 7$ $x = \ln 4$

Worked example	Your turn
Solve for all real values of <i>x</i> : $2 \sinh^2 x - 5 \cosh x = 5$	Solve for all real values of x: $2 \cosh^{2} x - 5 \sinh x = 5$ $x = \ln \left(-\frac{1}{2} + \frac{\sqrt{5}}{2} \right)$ $x = \ln (3 + \sqrt{10})$

Worked example	Your turn
Solve for all real values of x : $\cosh 2x - 5 \sinh x + 2 = 0$	Solve for all real values of x: $ \cosh 2x - 5 \cosh x + 4 = 0 $ $ x = \ln\left(\frac{3\pm\sqrt{5}}{2}\right), x = 0 $

Worked example	Your turn
Solve the equation	Solve the equation
$4 \sinh 3x = 15 - 6e^{3x}$	$3 \sinh 2x = 13 - 3e^{2x}$
Give your answer in the form $\frac{1}{3} \ln k$, where k	Give your answer in the form $\frac{1}{2} \ln k$, where k
is an integer	is an integer
	$x = \frac{1}{2}\ln 3$

Worked example	Your turn
Express $5 \cosh x + 3 \sinh x$ in the form $R \cosh(x + \alpha)$, where $R > 0$. Give the value of α correct to 3 decimal places. Hence write down the minimum value of $10 \cosh x + 6 \sinh x$	Express $10 \cosh x + 6 \sinh x$ in the form $R \cosh(x + \alpha)$, where $R > 0$. Give the value of α correct to 3 decimal places. Hence write down the minimum value of $10 \cosh x + 6 \sinh x$
	$8 \cosh(x + 0.693)$ Minimum = 8

6.4) Differentiating hyperbolic functions^{Chapter CONTENTS}

Worked example	Your turn
Prove that $\frac{d}{dx}(\sinh x) = \cosh x$	Prove that $\frac{d}{dx}(\cosh x) = \sinh x$
	Proof

Worked example	Your turn
Differentiate with respect to <i>x</i> : sinh 7 <i>x</i>	Differentiate with respect to <i>x</i> : sinh 2 <i>x</i> 2 cosh 2 <i>x</i>
cosh 6 <i>x</i>	cosh 3 <i>x</i>
	3 sinh 3 <i>x</i>
tanh 5 <i>x</i>	tanh 4 <i>x</i> 4 sech² 4 <i>x</i>

Worked example	Your turn
Differentiate with respect to x : $x^3 \sinh 5x$	Differentiate with respect to x: $x^2 \cosh 4x$ $2x \cosh 4x + 4x^2 \sinh 4x$

Worked example	Your turn
$y = \frac{1}{2}\ln(\tanh x)$ Show that $\frac{dy}{dx} = cosech 2x$	$y = \frac{1}{2} \ln(\coth x)$ Show that $\frac{dy}{dx} = -cosech 2x$ Shown

Worked example	Your turn
Prove that $\frac{d}{dx}(\operatorname{arsinh} x) = \frac{1}{\sqrt{x^2 + 1}}$	Prove that $\frac{d}{dx}(\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}$ $y = \operatorname{arcosh} x$ $x = \cosh y$ $\frac{dx}{dy} = \sinh y$ $\frac{dy}{dx} = \frac{1}{\sinh y}$ $\frac{dy}{dx} = \frac{1}{\sqrt{\cosh^2 y - 1}}$ $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}$

Worked example	Your turn
Differentiate with respect to <i>x</i> : <i>arsinh</i> 7 <i>x</i>	Differentiate with respect to x: arsinh 2x 2 $\sqrt{4x^2 + 1}$
arcosh 6x	$ar \cosh 3x$ 3 $\sqrt{9x^2 - 1}$
artanh 5x	$artanh 4x$ $\frac{4}{1-16x^2}$

Worked example	Your turn
Given that $y = (arsinh x)^4$ prove	Given that $y = (arcosh x)^2$ prove
that $(x^2 + 1) \left(\frac{dy}{dx}\right)^2 = 16y^{\frac{3}{2}}$	that $(x^2 - 1) \left(\frac{dy}{dx}\right)^2 = 4y$
	Proof

Worked example	Your turn
(a) Show that $\frac{d}{dx}(arsinh x) = \frac{1}{\sqrt{1+x^2}}$ (b) Find the first two non-zero terms of the series expansion of $arsinh x$. The general form for the series expansion of $arsinh x$ is given by $arsinh x = \sum_{r=0}^{\infty} \left(\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\right) \frac{x^{2n+1}}{2n+1}$ (c) Find, in simplest terms, the coefficient of x^7 . (d) Use your approximation up to and including the term in x^7 to find an approximate value for $arsinh 0.5$. (e) Calculate the percentage error in using this approximation.	(a) Show that $\frac{d}{dx}(arsinh x) = \frac{1}{\sqrt{1+x^2}}$ (b) Find the first two non-zero terms of the series expansion of $arsinh x$. The general form for the series expansion of $arsinh x$ is given by $arsinh x = \sum_{r=0}^{\infty} \left(\frac{(-1)^n (2n)!}{2^{2n} (n!)^2}\right) \frac{x^{2n+1}}{2n+1}$ (c) Find, in simplest terms, the coefficient of x^5 . (d) Use your approximation up to and including the term in x^5 to find an approximate value for $arsinh 0.5$. (e) Calculate the percentage error in using this approximation.
	(a) Shown (b) $x - \frac{1}{6}x^{3}$ (c) $\frac{3}{40}$ (d) 0.48151 (e) 0.062% (3 d.p.)

Your turn
Find the exact coordinates of the stationary point on the curve with equation $y = 12 \cosh x - \sinh x$
$\left(\frac{1}{2}\ln\frac{13}{11},\sqrt{143}\right)$

Worked example	Your turn
Find the first three non-zero terms of the Maclaurin series for sinh <i>x</i> Hence find the percentage error when this approximation is used to evaluate sinh 0.4	Find the first three non-zero terms of the Maclaurin series for $\cosh x$ Hence find the percentage error when this approximation is used to evaluate $\cosh 0.2$
	$1 + \frac{1}{2}x^2 + \frac{1}{24}x^4$ 0.0000087%

6.5) Integrating hyperbolic functions **Chapter CONTENTS**

Worked example	Yc	our turn
Find: $\int \cosh(3x - 2) dx$	Find: $\int \cosh(4x - 1) dx$	$\frac{1}{4}\sinh(4x-1)+c$
$\int \sinh\left(\frac{5}{7}x\right)dx$	$\int \sinh\left(\frac{2}{3}x\right)dx$	$\frac{3}{2}\cosh\left(\frac{2}{3}x\right) + c$
$\int \frac{7}{\sqrt{1+x^2}} dx$	$\int \frac{3}{\sqrt{1+x^2}} dx$	3 arsinh x + c
$\int \frac{6}{\sqrt{x^2 - 1}} dx$	$\int \frac{4}{\sqrt{x^2 - 1}} dx$	$4 \operatorname{arcosh} x + c$
$\int sinh\left(5x\right) dx$	$\int sinh\left(3x\right) dx$	$\frac{1}{3}\cosh(3x) + c$
$\int \frac{4}{\sqrt{x^2 - 1}} dx$	$\int \frac{10}{\sqrt{x^2 - 1}} dx$	$10 \ arcosh \ x + c$
$\int \frac{3}{\sqrt{1+x^2}} dx$	$\int \frac{2}{\sqrt{1+x^2}} dx$	$2 \operatorname{arsinh} x + c$

Worked example	Your turn
Find: $\int \frac{3 - 7x}{\sqrt{x^2 + 1}} dx$	Find: $\int \frac{2+5x}{\sqrt{x^2+1}} dx$ $2 \operatorname{arsinh} x + 5\sqrt{1+x^2} + c$

	Worked example	Your turn
Find:	$\int \sinh^7 3x \cosh 3x dx$	Find: $\int \cosh^5 2x \sinh 2x dx$
		$\frac{1}{12}\cosh^6 2x + c$

Worked example	Your turn
Find: $\int \coth x dx$	Find: $\int \tanh x dx$
	ln cosh x + C

Worked example	Your turn
Find: $\int \sinh^2 5x dx$	Find: $\int \cosh^2 3x dx$
	$\frac{1}{2}x + \frac{1}{12}\sinh 6x + c$

Worked example	Your turn
Find: $\int \cosh^3 x dx$	Find: $\int \sinh^3 x \ dx$
	$\frac{1}{3}\cosh^3 x - \cosh x + c$

Worked example	Your turn
Find: $\int e^{3x} \cosh x dx$	Find: $\int e^{2x} \sinh x dx$
	$\frac{1}{6}(e^{3x}-3e^x)+c$

Find:Find: $\int cosech x dx$ $\int \operatorname{sech} x dx$ (requires partial fractions) $2 \arctan(e^x) + c$	Worked example	Your turn
	$\int cosech \ x \ dx$	$\int \operatorname{sech} x dx$

Worked exampleYour turnShow that
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = arsinh\left(\frac{x}{a}\right) + c$$
Show that $\int \frac{1}{\sqrt{x^2 - a^2}} dx = arcosh\left(\frac{x}{a}\right) + c$ Shown

Worked example	Your turn
Evaluate $\int_5^8 \frac{1}{\sqrt{x^2+16}} dx$	Evaluate $\int_5^8 \frac{1}{\sqrt{x^2 - 16}} dx$
	$\ln\left(\frac{2+\sqrt{3}}{2}\right)$

Worked example Your turn	
By using a hyperbolic substitution, show that $\int \sqrt{x^2 - 1} dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \operatorname{arcosh} x + c$ By using a hyperbolic substitution, $\int \sqrt{1 + x^2} dx = \frac{1}{2} \operatorname{arsinh} x + \frac{1}{2} x \sqrt{1}$ Shown using $x = \sinh x$ NB: Can also use $x = \tan u$ bu	$\frac{1}{x^2} + c$

Worked example	Your turn
Worked example Using a hyperbolic substitution, evaluate $\int_{4}^{8} \frac{x^{3}}{\sqrt{x^{2} - 16}} dx$	Your turn Using a hyperbolic substitution, evaluate $\int_{0}^{6} \frac{x^{3}}{\sqrt{x^{2}+9}} dx$ $18\sqrt{5}+18$

Worked example	Your turn
Find: $\int \frac{1}{\sqrt{12x + 3x^2}} dx$	Find: $\int \frac{1}{\sqrt{12x + 2x^2}} dx$
	$\frac{1}{\sqrt{2}}arcosh\left(\frac{x+3}{3}\right) + C$

Worked example	Your turn
Find: $\int \frac{1}{x^2 - 6x - 3} dx$	Find: $\int \frac{1}{x^2 - 8x + 8} dx$
	$\frac{\sqrt{2}}{8} \ln \left \frac{x - 4 - 2\sqrt{2}}{x - 4 + 2\sqrt{2}} \right + C$

Worked example	Your turn
Evaluate: $\int_0^1 \frac{1}{\sqrt{x^2 + 8x + 17}} dx$	Evaluate: $\int_0^1 \frac{1}{\sqrt{x^2 + 2x + 5}} dx$
	0.400 (3 sf)

Your turn
Find: $\int \frac{1}{\sqrt{4x^2 + 9}} dx$
$\frac{1}{2}arsinh\left(\frac{2x}{3}\right) + c$

Worked example	Your turn
Hence, or otherwise, find: b) $\int \frac{1}{25x^2 + 10x + 17} dx$ c) $\int \frac{1}{\sqrt{25x^2 + 10x + 17}} dx$	$9x^{2} + 6x + 5 \equiv a(x + b)^{2} + c$ a) Find the values of a, b and c Hence, or otherwise, find: b) $\int \frac{1}{9x^{2} + 6x + 5} dx$ c) $\int \frac{1}{\sqrt{9x^{2} + 6x + 5}} dx$ a) $a = 9, b = \frac{1}{3}, c = 4$ b) $\frac{1}{6} \arctan \frac{3x + 1}{2} + c$ c) $\frac{1}{3} \operatorname{arsinh} \frac{3x + 1}{2} + c$