6) Hyperbolic functions

6.1) Introduction to hyperbolic functions
6.2) Inverse hyperbolic functions
6.3) Identities and equations
6.4) Differentiating hyperbolic functions
6.5) Integrating hyperbolic functions

6.1) Introduction to hyperbolic functions Chapter CONTENTS

Worked example

Your turn

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

$\operatorname{cosech} x=$

Your turn

Find to 2 decimal places, the values of: $\sinh 2$
$\cosh 0$
$\tanh 1.8$
Find to 2 decimal places, the values of: sinh 3
10.02
cosh 1
1.54
$\tanh 0.8$
0.66

Find the exact values of:
$\sinh (\ln 3)$
$\cosh (\ln 2)$
$\tanh (\ln 5)$

Find the exact values of:
$\sinh (\ln 2)$
$\frac{3}{4}$
$\cosh (\ln 3)$

$\tanh (\ln 4)$ $\frac{15}{17}$

Find, to two decimal places, the value of x for which

$$
\cosh x=3
$$

Find, to two decimal places, the value of x for which
$\sinh x=5$

$$
x=2.31
$$

Your turn

Sketch the graph of $y=\sinh x$ by using the exponential definition and state the range

Sketch the graph of $y=\cosh x, x \in \mathbb{R}$ by using the exponential definition and state the range

$\cosh x \geq 1$

By using the graph of $y=\sinh x$, sketch the graph of $y=\operatorname{cosech} x$

By using the graph of $y=\cosh x$, Sketch the graph of $y=\operatorname{sech} x$

Your turn

Sketch the graph of $y=2 \tanh x+3$, stating the asymptote equations of the curve

Sketch the graph of $y=3 \tanh x+2$, stating the asymptote equations of the curve

Asymptotes $y=5$ and $y=-1$

On the same diagram sketch the graphs of $y=\sinh 2 x$ and $y=2 \sinh x$

On the same diagram sketch the graphs of $y=\cosh 4 x$ and $y=4 \cosh x$

6.2) Inverse hyperbolic functions

Your turn

Sketch the graphs of:

$$
y=\operatorname{arsinh} x
$$

$$
y=\operatorname{arcosh} x
$$

Sketch the graphs of:
$y=\operatorname{artanh} x$

Express as natural logarithms:
$\operatorname{arsinh} 2$
$\operatorname{arcosh} 1$
artanh 3

Express as natural logarithms:

$$
\operatorname{arsinh} 1
$$

$$
\ln (1+\sqrt{2})
$$

$\operatorname{arcosh} 2$
$\ln (2+\sqrt{3})$
$\operatorname{artanh} \frac{1}{3}$
$\ln \sqrt{2}$

Prove that $\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$

$$
\begin{aligned}
y & =\operatorname{arsinh} x \\
x & =\sinh y \\
x & =\frac{e^{y}-e^{-y}}{2} \\
e^{y}-e^{-y} & =2 x \\
e^{2 y}-2 x e^{y}-1 & =0 \\
e^{y} & =\frac{-(-2 x) \pm \sqrt{(-2 x)^{2}-4(1)(-1)}}{2(1)} \\
& =x \pm \sqrt{x^{2}+1}
\end{aligned}
$$

Since $\sqrt{x^{2}+1}>x$, we can only use the positive case as $e^{y}>0$

$$
\begin{gathered}
e^{y}=x+\sqrt{x^{2}+1} \\
y=\ln \left(x+\sqrt{x^{2}+1}\right) \\
\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)
\end{gathered}
$$

Given that $\operatorname{artanh} x+\operatorname{artanh} y=\ln \sqrt{5}$, Given that $\operatorname{artanh} x+\operatorname{artanh} y=\ln \sqrt{3}$, find an expression for y in terms of x prove that $y=\frac{2 x-1}{x-2}$

Proof

Use definitions of $\sinh x$ and $\cosh x$ to prove that $\operatorname{sech}^{2} x=1-\tanh ^{2} x$

Use definitions of $\sinh x$ and $\cosh x$ to prove that $\cosh ^{2} x-\sinh ^{2} x=1$

Proof

Your turn

Use definitions of $\sinh x$ and $\cosh x$ to prove that: $\sinh (A+B)=\sinh A \cosh B+\cosh A \sinh B$

Use definitions of $\sinh x$ and $\cosh x$ to prove that: $\sinh (A-B)=\sinh A \cosh B-\cosh A \sinh B$

Proof
$\cosh (A-B)=\cosh A \cosh B-\sinh A \sinh B$
$\cosh (A+B)=\cosh A \cosh B+\sinh A \sinh B$
Proof

Use definitions of $\sinh x$ and $\cosh x$ to prove that $\cosh 2 x=2 \cosh ^{2} x-1$

Proof

Worked example

Your turn

Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities:
$\cos 2 x=\cos ^{4} x-\sin ^{4} x$

Use Osborn's rule to write down the hyperbolic identities corresponding to the trigonometric identities:

$$
\begin{gathered}
\cos 2 x=\cos ^{2} x-\sin ^{2} x \\
\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x
\end{gathered}
$$

Your turn

Given that $\sinh x=\frac{3}{5}$, find the exact value of:
Given that $\sinh x=\frac{3}{4}$, find the exact value of: $\cosh x$
$\frac{5}{4}$
$\tanh x$
$\frac{3}{5}$
$\sinh 2 x$
$\frac{15}{8}$

Solve for all real values of x : $6 \sinh x+2 \cosh x=7$

Solve for all real values of x :
$6 \sinh x-2 \cosh x=7$

$$
x=\ln 4
$$

Solve for all real values of x :
$2 \sinh ^{2} x-5 \cosh x=5$

Solve for all real values of x :
$2 \cosh ^{2} x-5 \sinh x=5$
$x=\ln \left(-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)$
$x=\ln (3+\sqrt{10})$

Solve for all real values of x :
$\cosh 2 x-5 \cosh x+4=0$

$$
x=\ln \left(\frac{3 \pm \sqrt{5}}{2}\right), x=0
$$

Worked example

Your turn

Solve the equation

$$
4 \sinh 3 x=15-6 e^{3 x}
$$

Give your answer in the form $\frac{1}{3} \ln k$, where k is an integer

Solve the equation

$$
3 \sinh 2 x=13-3 e^{2 x}
$$

Give your answer in the form $\frac{1}{2} \ln k$, where k is an integer

$$
x=\frac{1}{2} \ln 3
$$

Your turn

Express $5 \cosh x+3 \sinh x$ in the form $R \cosh (x+\alpha)$, where $R>0$. Give the value of α correct to 3 decimal places.
Hence write down the minimum value of $10 \cosh x+6 \sinh x$

Express $10 \cosh x+6 \sinh x$ in the form $R \cosh (x+\alpha)$, where $R>0$.
Give the value of α correct to 3 decimal places.
Hence write down the minimum value of $10 \cosh x+6 \sinh x$

$$
\begin{gathered}
8 \cosh (x+0.693) \\
\text { Minimum }=8
\end{gathered}
$$

6.4) Differentiating hyperbolic functions ${ }^{\text {Chapter CONTENTS }}$

Your turn

Prove that $\frac{d}{d x}(\sinh x)=\cosh x$
Prove that $\frac{d}{d x}(\cosh x)=\sinh x$ Proof

Differentiate with respect to x : $\sinh 7 x$
$\cosh 6 x$
$\tanh 5 x$

Differentiate with respect to x :
$\sinh 2 x$
$2 \cosh 2 x$
$\cosh 3 x$
$3 \sinh 3 x$
$\tanh 4 x$
$4 \operatorname{sech}^{2} 4 x$

Your turn

Differentiate with respect to x :

 $x^{3} \sinh 5 x$Differentiate with respect to x : $x^{2} \cosh 4 x$
$2 x \cosh 4 x+4 x^{2} \sinh 4 x$

Worked example

$$
y=\frac{1}{2} \ln (\tanh x)
$$

Show that $\frac{d y}{d x}=\operatorname{cosech} 2 x$

Your turn

$$
y=\frac{1}{2} \ln (\operatorname{coth} x)
$$

Show that $\frac{d y}{d x}=-\operatorname{cosech} 2 x$ Shown

Worked example

Your turn

Prove that

$$
\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{x^{2}+1}}
$$

Prove that

$$
\begin{aligned}
& \frac{d}{d x}(\operatorname{arcosh} x)=\frac{1}{\sqrt{x^{2}-1}} \\
& y=\operatorname{arcosh} x \\
& x=\cosh y \\
& \frac{d x}{d y}=\sinh y \\
& \frac{d y}{d x}=\frac{1}{\sinh y} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{\cosh ^{2} y-1}} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}-1}}
\end{aligned}
$$

Differentiate with respect to x :

 $\operatorname{arsinh} 7 x$$\operatorname{arcosh} 6 x$
$\operatorname{artanh} 5 x$

Differentiate with respect to x :
$\operatorname{arcosh} 3 x$

$\operatorname{artanh} 4 x$

$$
\frac{4}{1-16 x^{2}}
$$

Given that $y=(\operatorname{arsinh} x)^{4}$ prove
Given that $y=(\operatorname{arcosh} x)^{2}$ prove that $\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}=4 y$ Proof

Your turn

(a) Show that $\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{1+x^{2}}}$
(b) Find the first two non-zero terms of the series expansion of $\operatorname{arsinh} x$.
The general form for the series expansion of $\operatorname{arsinh} x$ is given by

$$
\operatorname{arsinh} x=\sum_{r=0}^{\infty}\left(\frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}\right) \frac{x^{2 n+1}}{2 n+1}
$$

(c) Find, in simplest terms, the coefficient of x^{7}.
(d) Use your approximation up to and including the term in x^{7} to find an approximate value for arsinh 0.5.
(e) Calculate the percentage error in using this approximation.
(a) Show that $\frac{d}{d x}(\operatorname{arsinh} x)=\frac{1}{\sqrt{1+x^{2}}}$
(b) Find the first two non-zero terms of the series expansion of $\operatorname{arsinh} x$.
The general form for the series expansion of $\operatorname{arsinh} x$ is given by

$$
\operatorname{arsinh} x=\sum_{r=0}^{\infty}\left(\frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}}\right) \frac{x^{2 n+1}}{2 n+1}
$$

(c) Find, in simplest terms, the coefficient of x^{5}.
(d) Use your approximation up to and including the term in x^{5} to find an approximate value for arsinh 0.5.
(e) Calculate the percentage error in using this approximation.
(a) Shown
(b) $x-\frac{1}{6} x^{3}$
(c) $\frac{3}{40}$
(d) $0.48151 \ldots$
(e) $0.062 \% ~(3 \mathrm{d.p}$.

Your turn

Find the exact coordinates of the stationary point on the curve with equation $y=6 \cosh x-\sinh x$

Find the exact coordinates of the stationary point on the curve with equation $y=12 \cosh x-\sinh x$

$$
\left(\frac{1}{2} \ln \frac{13}{11}, \sqrt{143}\right)
$$

Your turn

Find the first three non-zero terms of the Maclaurin series for $\sinh x$ Hence find the percentage error when this approximation is used to evaluate $\sinh 0.4$

Find the first three non-zero terms of the
Maclaurin series for $\cosh x$
Hence find the percentage error when this approximation is used to evaluate cosh 0.2

$$
\begin{gathered}
1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \\
0.0000087 \%
\end{gathered}
$$

6.5) Integrating hyperbolic functions Chapter CONTENTS

Find:

$$
\begin{aligned}
& \int \cosh (3 x-2) d x \\
& \int \sinh \left(\frac{5}{7} x\right) d x \\
& \int \frac{7}{\sqrt{1+x^{2}}} d x \\
& \int \frac{6}{\sqrt{x^{2}-1}} d x \\
& \int \sinh (5 x) d x \\
& \int \frac{4}{\sqrt{x^{2}-1}} d x \\
& \int \frac{3}{\sqrt{1+x^{2}}} d x
\end{aligned}
$$

Find:

$$
\begin{array}{ll}
\int \cosh (4 x-1) d x & \frac{1}{4} \sinh (4 x-1)+c \\
\int \sinh \left(\frac{2}{3} x\right) d x & \frac{3}{2} \cosh \left(\frac{2}{3} x\right)+c \\
\int \frac{3}{\sqrt{1+x^{2}}} d x & 3 \operatorname{arsinh} x+c \\
\int \frac{4}{\sqrt{x^{2}-1}} d x & 4 \operatorname{arcosh} x+c \\
\int \sinh (3 x) d x & \frac{1}{3} \cosh (3 x)+c \\
\int \frac{10}{\sqrt{x^{2}-1}} d x & 10 \operatorname{arcosh} x+c \\
\int \frac{2}{\sqrt{1+x^{2}}} d x & 2 \operatorname{arsinh} x+c
\end{array}
$$

Find:

$$
\int \frac{3-7 x}{\sqrt{x^{2}+1}} d x
$$

Find:

$$
\begin{gathered}
\int \frac{2+5 x}{\sqrt{x^{2}+1}} d x \\
2 \operatorname{arsinh} x+5 \sqrt{1+x^{2}}+c
\end{gathered}
$$

Find:

$$
\int \sinh ^{7} 3 x \cosh 3 x d x
$$

Find:

$$
\begin{gathered}
\int \cosh ^{5} 2 x \sinh 2 x d x \\
\frac{1}{12} \cosh ^{6} 2 x+c
\end{gathered}
$$

Your turn

Find:

$$
\int \operatorname{coth} x d x
$$

Find:

$$
\begin{gathered}
\int \tanh x d x \\
\ln |\cosh x|+C
\end{gathered}
$$

Your turn

Find:

$$
\int \sinh ^{2} 5 x d x
$$

Find:

$$
\begin{gathered}
\int \cosh ^{2} 3 x d x \\
\frac{1}{2} x+\frac{1}{12} \sinh 6 x+c
\end{gathered}
$$

Find:

$$
\int \cosh ^{3} x d x
$$

Find:

$$
\begin{gathered}
\int \sinh ^{3} x d x \\
\frac{1}{3} \cosh ^{3} x-\cosh x+c
\end{gathered}
$$

Find:

$$
\int e^{3 x} \cosh x d x
$$

Find:

$$
\begin{gathered}
\int e^{2 x} \sinh x d x \\
\frac{1}{6}\left(e^{3 x}-3 e^{x}\right)+c
\end{gathered}
$$

Your turn

Find:

$$
\qquad \int \operatorname{cosech} x d x
$$

Find:

$$
\int \operatorname{sech} x d x
$$

$2 \arctan \left(e^{x}\right)+c$

Your turn

$$
\text { Show that } \int \frac{1}{\sqrt{a^{2}+x^{2}}} d x=\operatorname{arsinh}\left(\frac{x}{a}\right)+c \quad \text { Show that } \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\operatorname{arcosh}\left(\frac{x}{a}\right)+c
$$

Shown

$$
\ln \left(\frac{2+\sqrt{3}}{2}\right)
$$

Your turn

By using a hyperbolic substitution, show that
$\int \sqrt{x^{2}-1} d x=\frac{1}{2} x \sqrt{x^{2}-1}-\frac{1}{2} \operatorname{arcosh} x+c$

By using a hyperbolic substitution, show that
$\int \sqrt{1+x^{2}} d x=\frac{1}{2} \operatorname{arsinh} x+\frac{1}{2} x \sqrt{1+x^{2}}+c$
Shown using $x=\sinh u$
NB: Can also use $x=\tan u$ but longer

Using a hyperbolic substitution, evaluate

$$
\int_{4}^{8} \frac{x^{3}}{\sqrt{x^{2}-16}} d x
$$

Using a hyperbolic substitution, evaluate

$$
\begin{gathered}
\int_{0}^{6} \frac{x^{3}}{\sqrt{x^{2}+9}} d x \\
18 \sqrt{5}+18
\end{gathered}
$$

Find:

$$
\int \frac{1}{\sqrt{12 x+3 x^{2}}} d x
$$

Find:

$$
\begin{gathered}
\int \frac{1}{\sqrt{12 x+2 x^{2}}} d x \\
\frac{1}{\sqrt{2}} \operatorname{arcosh}\left(\frac{x+3}{3}\right)+C
\end{gathered}
$$

Find:

$$
\int \frac{1}{x^{2}-6 x-3} d x
$$

Find:

$$
\begin{gathered}
\int \frac{1}{x^{2}-8 x+8} d x \\
\frac{\sqrt{2}}{8} \ln \left|\frac{x-4-2 \sqrt{2}}{x-4+2 \sqrt{2}}\right|+C
\end{gathered}
$$

Evaluate:

$$
\int_{0}^{1} \frac{1}{\sqrt{x^{2}+8 x+17}} d x
$$

Evaluate:

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{\sqrt{x^{2}+2 x+5}} d x \\
0.400(3 \mathrm{sf})
\end{gathered}
$$

Find:

$$
\int \frac{1}{\sqrt{9 x^{2}+4}} d x
$$

Find:

$$
\begin{gathered}
\int \frac{1}{\sqrt{4 x^{2}+9}} d x \\
\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)+c
\end{gathered}
$$

$$
25 x^{2}+10 x+17 \equiv a(x+b)^{2}+c
$$

a) Find the values of a, b and c Hence, or otherwise, find:
b) $\int \frac{1}{25 x^{2}+10 x+17} d x$
C) $\int \frac{1}{\sqrt{25 x^{2}+10 x+17}} d x$

$$
9 x^{2}+6 x+5 \equiv a(x+b)^{2}+c
$$

a) Find the values of a, b and c Hence, or otherwise, find:
b) $\int \frac{1}{9 x^{2}+6 x+5} d x$
c) $\int \frac{1}{\sqrt{9 x^{2}+6 x+5}} d x$
a) $a=9, b=\frac{1}{3}, c=4$
b) $\frac{1}{6} \arctan \frac{3 x+1}{2}+c$
c) $\frac{1}{3} \operatorname{arsinh} \frac{3 x+1}{2}+c$

