5.4) Tangents to polar curves

Worked example	Your turn
Find the coordinates of the points on $r = a(1 + \sin \theta)$ where the tangents are parallel to the initial line $\theta = 0$.	Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are parallel to the initial line $\theta = 0$.
	$\left(\frac{3a}{2},\pm\frac{\pi}{3}\right)$ and $(0,\pi)$

Worked example	Your turn
Find the coordinates of the points on $r = a(1 + \sin \theta)$ where the tangents are perpendicular to the initial line $\theta = 0$.	Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are perpendicular to the initial line $\theta = 0$.
	$(2a, 0), (0, \pi)$ and $\left(\frac{(2-\sqrt{2})}{2}a, \pm \frac{3\pi}{4}\right)$

Worked example	Your turn
The curve C has polar equation	The curve C has polar equation
$r = 1 + 3\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$	$r = 1 + 2\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$
At the point <i>P</i> on <i>C</i> , the tangent to <i>C</i> is parallel to the initial line. Given that <i>O</i> is the pole, find the exact length of the line <i>OP</i> .	At the point <i>P</i> on <i>C</i> , the tangent to <i>C</i> is parallel to the initial line. Given that <i>O</i> is the pole, find the exact length of the line <i>OP</i> .
	$\frac{3+\sqrt{33}}{4}$

Worked example	Your turn
Find the points on the spiral $r = e^{3\theta}$, $0 \le \theta \le \pi$, where the tangents are: • Perpendicular to the initial line	Find the points on the spiral $r = e^{2\theta}$, $0 \le \theta \le \pi$, where the tangents are: • Perpendicular to the initial line
	(9.15, 1.11)
Perpendicular to the initial line	• Perpendicular to the initial line (212, 2.68)

Worked example	Your turn
Find the equation and the points of contact of the tangents to the curve	Find the equation and the points of contact of the tangents to the curve
$r = a \cos 2\theta, 0 \le \theta \le \frac{\pi}{2}$	$r = a \sin 2\theta, 0 \le \theta \le \frac{\pi}{2}$
that are parallel to the initial line	that are parallel to the initial line
	$(0,0)$; Tangent $\theta = 0$
	$\left(\frac{2a\sqrt{2}}{3}, 0.955\right)$; Tangent $r = \frac{4a}{3\sqrt{3}}$ cosec θ

Worked example	Your turn
Find the equation and the points of contact of the tangents to the curve	Find the equation and the points of contact of the tangents to the curve
$r = a \cos 2\theta, 0 \le \theta \le \frac{\pi}{2}$	$r = a \sin 2\theta, 0 \le \theta \le \frac{\pi}{2}$
that are perpendicular to the initial line.	that are perpendicular to the initial line.
	$(0,0)$; Tangent $\theta = \frac{\pi}{2}$
	$\left(\frac{2a\sqrt{2}}{3}, 0.615\right)$; Tangent $r = \frac{4a}{3\sqrt{3}}$ sec θ

Worked exampleYour turnThe diagram shows the cardioid with polar
equation $r = 4(1 + \sin \theta)$ The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$ An area is enclosed by the curve and the
horizontal line segment which is tangent to
the curve and parallel to the initial line.
Find the area.The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$ An area is enclosed by the curve and the
horizontal line segment which is tangent to the
initial line.
Find the area.The diagram shows the cardioid with polar
equation $r = 2(1 + \cos \theta)$

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>