5.4) Modelling with volumes of revolution

Worked example	Your turn
 A manufacturer wants to cast a prototype for a new design for a lightbulb out of glass. A region is used as a model for the cross-section of the lightbulb. The region is bounded by the <i>x</i>-axis and the curve with equation y = k - 60x², and will be rotated around the <i>y</i>-axis. Each unit on the coordinate axes represents 1cm. (a) Suggest a suitable value for k. (b) Use your value of k to estimate the volume of glass needed to make the prototype. (c) State one limitation of this model. 	A manufacturer wants to cast a prototype for a new design for a pen barrel out of solid resin. A region is used as a model for the cross-section of the pen barrel. The region is bounded by the <i>x</i> -axis and the curve with equation $y = k - 100x^2$, and will be rotated around the <i>y</i> - axis. Each unit on the coordinate axes represents 1cm. (a) Suggest a suitable value for <i>k</i> . (b) Use your value of <i>k</i> to estimate the volume of resin needed to make the prototype. (c) State one limitation of this model. (a) $k = 10$ ($10 \le k \le 15$ sensible) (b) $1.57cm^3$ (3 sf) (c) The cross-section of the pen unlikely to match the curve exactly

Worked example	Your turn
Use integration to show that the volume of a cylinder is $V = \pi r^2 h$	Use integration to show that the volume of a cone is $V = \frac{1}{3}\pi r^2 h$ Shown
Use integration to show that the volume of a sphere is $V = \frac{4}{3}\pi r^3$	