5.4) Modelling with volumes of revolution

Worked example

Your turn

A manufacturer wants to cast a prototype for a new design for a lightbulb out of glass. A region is used as a model for the cross-section of the lightbulb. The region is bounded by the x-axis and the curve with equation $y=$ $k-60 x^{2}$, and will be rotated around the y-axis. Each unit on the coordinate axes represents 1 cm .
(a) Suggest a suitable value for k.
(b) Use your value of k to estimate the volume of glass needed to make the prototype.
(c) State one limitation of this model.

A manufacturer wants to cast a prototype for a new design for a pen barrel out of solid resin. A region is used as a model for the cross-section of the pen barrel. The region is bounded by the x-axis and the curve with equation $y=k-100 x^{2}$, and will be rotated around the y axis. Each unit on the coordinate axes represents 1 cm .
(a) Suggest a suitable value for k.
(b) Use your value of k to estimate the volume of resin needed to make the prototype.
(c) State one limitation of this model.
(a) $k=10(10 \leq k \leq 15$ sensible)
(b) $1.57 \mathrm{~cm}^{3}$ (3 sf)
(c) The cross-section of the pen unlikely to match
the curve exactly

Your turn

Use integration to show that the volume of a cylinder is $V=\pi r^{2} h$

Use integration to show that the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$

