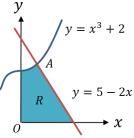

Adding and Subtracting Volumes

With more complex volumes you may need to consider compound areas or volumes of general shapes.

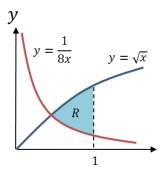
GCSE Reminders:


Example

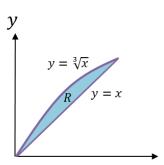
The region *R* is bounded by the curve with equation $y = x^3 + 2$, the line y = 5 - 2x and *x* and *y*-axes.

(a) Verify that the coordinates of A are (1,3).

A solid is created by rotating the region 360° about the *x*-axis.


(b) Find the volume of this solid.

Example


The diagram shows the region *R* bounded by the curves with equations $y = \sqrt{x}$ and $y = \frac{1}{8x}$ and the line x = 1.

The region is rotated through 360° about the *x*-axis. Find the exact volume of the solid generated.

Test Your Understanding

The area between the lines with equations y = x and $y = \sqrt[3]{x}$, where $x \ge 0$ is rotated 360° about the *x*-axis. Determine the volume of the solid generated.

Ex 5C Pg 81-83