5.3) Adding and subtracting volumes

Worked example

e Your turn

A finite region is bounded by the curve with equation $y = x^3 + 1$, the line y = 3 - x and the x and y-axes.

and y-axes. A solid is created by rotating the region 360° about the x-axis. Find the volume of this solid.

A finite region is bounded by the curve with equation $y = x^3 + 2$, the line y = 5 - 2x and the x and y-axes.

A solid is created by rotating the region 360° about the *x*-axis. Find the volume of this solid.

$$\frac{135\pi}{14}$$

Worked example

A finite region is bounded by the curves with equations $y = \sqrt{x}$ and $y = \frac{1}{27x}$ and the line x = 2. The region is rotated through 360° about the x-

axis. Find the exact volume of the solid generated.

Your turn

A finite region is bounded by the curves with equations $y = \sqrt{x}$ and $y = \frac{1}{8x}$ and the line x = 1. The region is rotated through 360° about the xaxis. Find the exact volume of the solid generated.

 $\frac{27\pi}{64}$

Worked example

Your turn

The area between the lines with equations y=x and $y=\sqrt{x}$, where $x\geq 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

The area between the lines with equations y = x and $y = \sqrt[3]{x}$, where $x \ge 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

 $\frac{4\pi}{15}$