5.3) Adding and subtracting volumes

Your turn

A finite region is bounded by the curve with equation $y=x^{3}+1$, the line $y=3-x$ and the x and y-axes.
A solid is created by rotating the region 360° about the x-axis. Find the volume of this solid.

A finite region is bounded by the curve with equation $y=x^{3}+2$, the line $y=5-2 x$ and the x and y-axes.
A solid is created by rotating the region 360° about the x-axis. Find the volume of this solid.
$\frac{135 \pi}{14}$

Your turn

A finite region is bounded by the curves with equations $y=\sqrt{x}$ and $y=\frac{1}{27 x}$ and the line $x=2$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.
equations $y=\sqrt{x}$ and $y=\frac{1}{8 x}$ and the line $x=1$. The region is rotated through 360° about the x axis. Find the exact volume of the solid generated.

$$
\frac{27 \pi}{64}
$$

Your turn

The area between the lines with equations $y=x$ and $y=\sqrt{x}$, where $x \geq 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

The area between the lines with equations $y=x$ and $y=\sqrt[3]{x}$, where $x \geq 0$ is rotated 360° about the x-axis. Determine the volume of the solid generated.

$$
4 \pi
$$

