5.2) Volumes of revolution around the y-axis

Your turn

A curve has equation $y=\sqrt{x-2}$. A finite region is bounded by the curve, the y-axis and the lines $y=$ 1 and $y=4$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $y=\sqrt{x-1}$. A finite region is bounded by the curve, the y-axis and the lines $y=$ 1 and $y=3$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

Your turn

A curve has equation $y=\sqrt[3]{3 x+1}$. A finite region is bounded by the curve, the y-axis and the lines $y=2$ and $y=5$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $y=\sqrt[3]{2 x+1}$. A finite region is bounded by the curve, the y-axis and the lines $y=2$ and $y=4$. The region is rotated through 360° about the y-axis. Find the volume of the solid generated.
7715π
14

Your turn

A curve has equation $x=y^{2}-4 y+8$. A finite region is bounded by the curve, the y-axis and the lines $y=1$ and $y=5$.
a) Find the area of the region
b) The region is rotated through 360° about the y-axis. Find the volume of the solid generated.

A curve has equation $x=y^{2}-6 y+10$. A finite region is bounded by the curve, the y-axis and the lines $y=1$ and $y=4$.
a) Find the area of the region
b) The region is rotated through 360° about the y-axis. Find the volume of the solid generated.
a) 6
b) $\frac{78}{5} \pi$

Worked example

Your turn

$$
f(x)=x^{2}-6 x+9, x \geq 3
$$

$$
f(x)=x^{2}-2 x+1, x \geq 1
$$

A finite region is bounded by the curve $y=f(x)$, the y-axis and the lines $y=1$ and $y=4$ The region is rotated through 2π radians about the y-axis. Find the exact volume of the solid generated.

Your turn

A curve has equation $y^{2}=\frac{1}{2 x+1}$
A finite region is bounded by the curve $y=f(x)$, the y-axis and the line $y=4$
The region is rotated through 2π radians about the y-axis. Find the volume of the solid generated.

$$
\frac{117}{256} \pi
$$

